How To Solve It

A New Aspect of
Mathematical Method

G. POLYA

Stanford University

SECOND EDITION

Princeton University Press
Princeton, New Jersey



Copyright 1945 by Princeton University Press
Copyright © renewed 1973 by Princeton University Press
Second Edition Copyright © 1957 by G. Polya
All Rights Reserved
L.C. Card: 79-160544
ISBN o-691-02856-5 {paperback edn.)

ISBN 0-691-08097-6 (hardcover edn.)

First Princeton Paperback Printing, 1g71

Second Printing, 1973

Tllis book is sold subject to the condition that
it shall not, by way of trade, be lent, resold,
hired out, or otherwise disposed of without
the publisher’s consent, in any form of bind-

ing or cover other than that jn which it is
published,

Printed in the United States of America

by Princeton University Press, Princeton, New Jersey

From the Preface to the First Printing

A great discovery solves a great problem but there is a
grain of discovery in the solution of any problem. Your
problem may be modest; but if it challenges your curios-
ity and brings into play your inventive faculties, and if
you solve it by your own means, you may experience the
tension and enjoy the triumph of discovery. Such experi-
ences at a susceptible age may create a taste for mental
work and leave their imprint on mind and character for
a lifetime.

Thus, a teacher of mathematics has a great cpportu-
nity. If he fills his allotted time with drilling his students
in routine operations he kills their interest, hampers
their intellectual development, and misuses his oppor-
tunity. But if he challenges the curiosity of his students
by setting them problems proportionate to their knowl-
edge, and helps them to solve their problems with stimu-
lating questions, he may give them a taste for, and some
means of, independent thinking.

Also a student whose college curriculum includes some
mathematics has a singular opportunity. This opportu-
nity is lost, of course, if he regards mathematics as a
subject in which he has to earn so and so much credit
and which he should forget after the final examination

. a8 quickly as possible. The opportunity may be lost even

if the student has some natural talent for mathematics
because he, as everybody else, must discover his talents
and tastes; he cannot know that he likes raspberry pie if

~ he has never tasted raspberry pie. He may manage to find

out, however, that a mathematics problem may be as
much fun as a crossword puzzle, or that vigorous mental
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vi From the Preface to the First Printing

work may be an exercise as desirable as a fast game of
tennis. Having tasted the pleasure in mathematics he will
not forget it easily and then there is a good chance that
mathematics will become something for him: a hobby, or
a tool of his profession, or his profession, or a great
ambition,

The author remembers the time when he was a student
himself, a somewhat ambitious student, eager to under-
stand a little mathematics and physics. He listened to
lectures, read books, tried to take in the solutions and
facts presented, but there was a question that disturbed
him again and again: “Yes, the solution seems to work,
it appears to be correct; but how is it possible to invent
such a solution? Yes, this experiment seems to work, this
appears to be a fact; but how can people discover such
facts? And how could I invent or discover such things by
myselfr” Today the author is teaching mathematics in a
university; he thinks or hopes that some of his more eager
students ask similar questions and he tries to satisfy their
curiosity. Trying to understand not only the solution of
this or that problem but also the motives and procedures
of the solution, and trying to explain these motives and
procedures to others, he was finally led to write the
present book. He hopes that it will be useful to teachers
who wish to develop their students’ ability to solve prob-
lems, and to students who are keen on developing their
own abilities.

Although the present baok pays special attention to the
requirements of students and teachers of mathematics, it
should interest anybody concerned with the ways and
means of invention and discovery. Such interest may be
more widespread than one would assume without reflec-
tion. The space devoted by popular newspapers and
magazines to crossword puzzles and other riddles seems
to show that people spend some time in solving unprac-

From the Preface to the First Printing vii

tical problems. Behind the desire to solve this or that
problem that confers no material advantage, there may
be a deeper curiosity, a desire to understand the ways and
means, the motives and procedures, of solution.

The following pages are written somewhat concisely,
but as simply as possible, and are based on a long and
serious study of methods of solution. This sort of study,
called heurisiic by some writers, is not in fashion now-
adays but has a long past and, perhaps, some future.

Studying the methods of solving problems, we perceive
another face of mathematics. Yes, mathematics has two
faces; it is the rigorous science of Euclid but it is also
something else. Mathematics presented in the Euclidean
way appears as a systematic, deductive science; but mathe-
matics in the making appears as an experimental, in-
ductive science. Both aspects are as old as the science of
mathematics itself. But the second aspect is new in one
respect; mathematics “in statu nascendi,” in the process
of being invented, has never before been presented-m
quite this manner to the student, or to the teacher him-
self, or to the general public.

The subject of heuristic has manifold connections;
mathematicians, logicians, psychologists, educationalists,
even philosophers may claim various parts of it as belong-
ing to their special domains. The author, well aware of
the possibility of criticism from opposite quarters and
keenly conscious of his limitations, has one claim to
make: he has some experience in solving problems and
in teaching mathematics on various levels.

The subject is more fully dealt with in a more exten-
sive book by the author which is on the way to com-
pletion.

Stanford University, dugust 1, 1944
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From the Preface to the Seventh Printing

I am glad to say that I have now succeeded in fulfilling,
at least in part, a promise given in the preface to the
first printing: The two volumes Induction and Analogy
in Mathematics and Patterns of Plausible Inference which
constitute my recent work Mathematics and Plausible

Reasoning continue the line of thinking begun in How
to Solve Ii.

Zurich, dugust 30, 1954

Preface to the Second Edition ix

Preface to the Second Edition

The present second edition adds, besides a few minor
improvements, a new fourth part, “Problems, Hints,
Solutions.”

As this edition was being prepared for print, a study
appeared (Educational Testing Service, Princeton, N.}.;
¢f. Time, June 18, 1956) which seems to have formu-
lated a few pertinent observations—they are not new to
the people in the know, but it was high time to formu-
late them for the general public—: “, .. mathematics has
the dubious honor of being the least popular subject in
the curriculum . . . Future teachers pass through the
elementary schools learning to detest mathematics .
They return to the elementary school to teach a new
generation to detest it.”

I hope that the present edition, designed for wider
diffusion, will convince some of its readers that mathe-

' matics, besides being a necessary avenue to engineering

jobs and scientific knowledge, may be fun and may also
open up a vista of mental activity on the highest level.

Zurich, June 30, 1956
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Introduction

The following considerations are grouped around the
preceding list of questions and suggestions entitled “How
to Solve It.” Any question or suggestion quoted from it
will be printed in jtalics, and the whole list will be
referred to simply as “the list” or as “our list.”

The following pages will discuss the purpose of the
Tist, illustrate its practical use by examples, and explain
the underlying notions and mental operations. By way of
preliminary explanation, this much may be said: If,
using them properly, you address these questions and
suggestions to yourself, they may help you to solve your
problem. If, using them properly, you address the same
questions and suggestions to one of your students, you
may help him to solve his problem.

- The book is divided into four parts.

The title of the first part is “In the Classroom.” It
contains twenty sections. Each section will be quoted by
its number in heavy type as, for instance, “section 7.”
Sections 1 to 5 discuss the “Purpose” of our list in gen-
eral terms. Sections 6 to 17 explain what are the “Main
Divisions, Main Questions™ of the list, and discuss a first
Practical example. Sections 18, 19, 20 add “More Ex-
amples.”

. The title of the very short second part is “How to
‘Solve It.” It is written in dialogue; a somewhat idealized
$eacher answers short questions of a somewhat idealized
dent.

‘The third and most extensive part is a “Short Diction-
of Heuristic”; we shall refer to it as the “Dictionary.”

Xix



XX Introduction

It contains sixty-seven articles arranged alphabetically.
For example, the meaning of the term HEURISTIC (set
in small capitals) is explained in an article with this title
on page 112. When the title of such an article is referred
to within the text it will be set in small capitals. Certain
paragraphs of a few articles are more technical; they are
enclosed in square brackets. Some articles are fairly
closely connected with the first part to which they add
further illustrations and more specific comments. Other
articles go somewhat beyond the aim of the first part of
which they explain the background. There is a key-
article on MODERN HEURISTIC. It explains the connection
of the main articles and the plan underlying the Diction-
ary; it contains also directions how to find information
about particular items of the list. ¥t must be emphasized
that there is a common plan and a certain unity, because
the articles of the Dictionary show the greatest outward
variety. There are a few longer articles devoted to the
systematic though condensed discussion of some general
theme,; others contain more specific comments, still others
cross-references, or historical data, or quotations, or
aphorisms, or even jokes.

The Dictionary should not be read too quickly; its text '

is often condensed, and now and then somewhat subtle.
The reader may refer to the Dictionary for information
about particular points. If these points come from his
experience with his own problems or his own students,
the reading has a much better chance to be profitable.

The title of the fourth part is “Problems, Hints, Solu-
tions.” It proposes a few problems to the more ambitious
reader. Each problem is followed (in proper distance) by
a “hint” that may reveal a way to the result which is
explained in the “solution.”

We have mentioned repeatedly the “student” and the
“teacher” and we shall refer to them again and again. It

Introduction xxi

may be good to observe that the “student” may be a high
school student, or a college student, or anyone else who
is studying mathematics. Also the “teacher” may be a
high school teacher, or a college instructor, or anyone
interested in the technique of teaching mathematics. The
author looks at the situation sometimes from the point
of view of the student and sometimes from that of the
teacher (the latter case is preponderant in the first part).
Yet most of the time (especially in the third part) the

point of view is that of a person who is neither teacher

nor student but anxious to solve the problem before him.
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PART I. IN THE CLASSROOM

PURPOSE

1. Helping the student. One of the most important
tasks of the teacher is to help his students. This task is
not quite easy; it demands time, practice, devotion, and
sound principles.

The student should acquire as much experience of
independent work as possible. But if he is left alone with
his problem without any help or with insufficient help,
be may make no progress at all. If the teacher helps too
much, nothing is left to the student. The teacher should
help, but not too much and not too little, so that the
student shall have a reasonable share of the work.

If the student is not able to do much, the teacher
should leave him at least some illusion of independent
work. In order to do so, the teacher should help the
student discreetly, unobirusively.

The best is, however, to help the student naturally.
The teacher should put himself in the student’s place, he
should see the student’s case, he should try to understand
what is going on in the student’s mind, and ask a ques-
tion or indicate a step that could have occurred to the
Student himself.

2. Questions, recommendations, mental operations,
Trying to help the student effectively but unobtrusively
and naturally, the teacher is led to ask the same questions
and to indicate the same steps again and again. Thus, in
countless problems, we have to ask the question: What

1



2 In the Classroom

is the unknown? We may vary the words, and ask the
same thing in many different ways: What is required?
What do you want to find? What are you supposed to
seck? The aim of these questions is to focus the student’s
attention upon the unknown. Sometimes, we obtain the
same effect more naturally with a suggestion: Look at the
unknown! Question and suggestion aim at the same
effect; they tend to provoke the same mental opera-
tiomn.

It seemed to the author that it might be worth while to
collect and to group questions and suggestions which are
typically helpful in discussing problems with students.
The list we study contains questions and suggestions of
this sort, carefully chosen and arranged; they are equally
useful to the problem-solver who works by himself. If the
reader is sufficiently acquainted with the list and can see,
behind the suggestion, the action suggested, he may real-
ize that the list enumerates, indirectly, mental operations
typically useful for the solution of problems. These
operations are listed in the order in which they are most
likely to occur.

3. Generality is an important characteristic of the
questions and suggestions contained in our list. Take the
questions: What 15 the unknown? What are the data?
What is the condition? These questions are generally
applicable, we can ask them with good effect dealing
with all sorts of problems. Their use is not restricted to
any subject-matter. Our problem may be algebraic or
geometric, mathematical or nonmathematical, theoretical
or practical, a serious problem or a mere puzzle; it makes
no difference, the questions make sense and might help
us to solve the problem.

There is a restriction, in fact, but it has nothing to do
with the subject-matter. Certain questions and sugges-
tions of the list are applicable to “problems to find’" only,

5. Teacher and Student. Imitation and Practice 3

not to “problems to prove.” 1f we have a problem of the

latter kind we must use different questions; see PROELEMS

TO FIND, PROBLEMS TO PROVE,

4. Flommon sense. The questions and suggestions of
our list are general, but, except for their generality, they
are natural, simple, obvious, and proceed from plain
common sense. T'ake the suggestion: Look at the un-
known! And try to think of a familiar problem having
the same or a similar unknown. This suggestion advises
you to do what you would do anyhow, without any
advice, if you were seriously concerned with your prob-
ler_n. Are you hungry? You wish to obtain food and you
think of familiar ways of obtaining food. Have you a
problem of geometric construction? You wish to con-
struct a triangle and you think of familiar ways of con-
structing a triangle. Have you a problem of any kind?
You. w'\ush to find a certain unknown, and vou think of
familiar ways of finding such an unknown, or some simi-
lar }mknown. If you do so you follow exactly the sug-
gestion we quoted from our list. And you are on the right
track, too; the suggestion is a good one, it suggests to you
a procedure which is very frequently successful.

. All the questions and suggestions of our list are natural,
mm_ple, obvious, just plain common sense; but they state
p]am' common sense in general terms. They suggest a
certain conduct which comes naturally to any person who
is seriously concerned with his problem and has some
common sense. But the person who behaves the right way
usually does not care to express his behavior in clear
words and, possibly, he cannot express it s0; our list tries
to express it so.

5. Tearjher and student. Imitation and practice. There
are two aims which the teacher may have in view when
addnt:ssmg to his students a question or a suggestion of
the list: First, to help the student to solve the problem
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at hand. Second, to develop the student’s ability so that
he may solve future problems by himself.

Experience shows that the questions and suggestions of
our list, appropriately used, very frequently help the
student. They have two common characteristics, common
sense and generality. As they proceed from plain common
sense they very often come naturally; they could have
occurred to the student himself. As they are general, they
help unobtrusively; they just indicate a general direction
and leave plenty for the student to do.

But the two aims we mentioned before are closely con-
aected: if the student succeeds in solving the problem at
hand, he adds a little to his ability to solve problems.
Then, we should not forget that our questions are gen-
eral, applicable in many cases. If the same question is
repeatedly helpful, the student will scarcely fzil to notice
it and he will be induced to ask the question by himself
in a similar situation. Asking the question repeatedly, he
may succeed once in eliciting the right idea. By such a
success, he discovers the right way of using the question,
and then he has reaily assimilated it.

The student may absorb a few questions of our list so
well that he is finally able to put to himself the right
question in the right moment and to perform the corre-
sponding mental operation mnaturally and vigorously.
Such a student has certainly derived the greatest possible
profit from our list. What can the teacher do in order to
obtain this best possible result?

Solving problems is a practical skill like, let us say,
swimming. We acquire any practical skill oy imitation
and practice, Trying to swim, you imitate what other
people do with their hands and feet to keep their heads
above water, and, finally, you learn to swim by prac-
ticing swimming. Trying to solve problems, you have to
observe and to imitate what other people do when solv-

6. Four Phases 5

ing problems and, finally, you learn to do problems by
doing them.

The teacher who wishes to develop his students’ ability
to do problems must instill some interest for problems
%nt:o tl?eir minds and give them plenty of opportunity for
imitation and practice. If the teacher wishes to develop
in his students the mental operations which correspond
to the questions and suggestions of our list, he puts these
questions and suggestions to the students as often as he
can do so naturally. Moreover, when the teacher solves
a problem before the class, he should dramatize his ideas
a little and he should put to himself the same questions
wh.ich he uses when helping the students. Thanks to such
guidance, the student will eventually discover the right
use of these questions and suggestions, and doing so he
will acquire something that is more important than the
knowledge of any particular mathematical fact.

MAIN DIVISIONS, MAIN QUESTIONS

6. Four phases. Trying to find the solution, we may re-
peatedly change our point of view, our way of looking
at the problem. We have to shift our position again and
again. Our conception of the problem is likely to be
rather incomplete when we start the work; our out-
%ook is different when we have made some progress; it
is again different when we have almost obtained the
solution.

Irf order to group conveniently the questions and sug-
gestions of our list, we shall distinguish four phases of
the work. First, we have to understand the problem; we
have to see clearly what is required. Second, we have to
see how the various items are connected, how the un-
known is linked to the data, in order to obtain the idea
of the solution, to make a plan. Third, we carry out our



6 In the Classroom

plan. Fourth, we lock back at the completed solution,
we review and discuss it.
Fach of these phases has its importance. It may ]}ap-

pen that a student hits upon an exceptuonally.bnght

jdea and jumping all preparations bluits out wn.:h the

solution. Such lucky ideas, of course, are most desirable,

but something very undesirable and unfortunate may

result if the student leaves out any of the four phas?s
without having a good idea. The worst may happen if
the student embarks upon computations OT CONSIrUc
tions without having understood the problen.l. It is
generally useless to carry out details without having seen
the main connection, oOr having made. a sort o-f plan.
Many mistakes can be avoided if, carrying out his plan,
the student checks each step. Some of the best effects may
be lost if the student fails to reexamine and to reconsider
the completed sclution. ' _

7. Understanding the problem. It is fOOl'lSh 1o answer

a question that you do not understand. It 1s s-ad to work
for an end that you do not desire. Such foolish and sad
things often happen, in and out of school, .but.the Feacher
should try to prevent them from happening in his class.
The student should understand the problem. But he

should not only understand it, he should also desire its ~

solution. If the student is lacking in understanding or 1n
interest, it is not always his fault; the problem should be
well chosen, not too difficult and not too easy, natural
and interesting, and some time. should be allowed for
ral and interesting presentation.

na;:;rst of all, the verifl statement of the-problem must
be understood. The teacher can check this, up to a cer-
tain extent; he asks the student to repeat the statement,
and the student should be able to state the p}'oblem
fluently. The student should also be able to point c:;:z
the principal parts of the problem, the unknown,

8. Example 9

data, the condition. Hence, the teacher can seldom afford
to miss the questions: What is the unknown? Whai are
the data? What is the condition?

The student should consider the principal parts of the
problem attentively, repeatedly, and from various sides.
If there is a figure connected with the problem he should
draw a figure and point out on it the unknown and the
data. If it is necessary to give nmames to these objects he
should introduce suttable notation; devoting some atten-
tion to the appropriate choice of signs, he is obliged w
consider the objects for which the signs have to be chosen,
There is another question which may be useful in this
preparatory stage provided that we do not expect a
definitive answer but just a provisional answer, a guess:
Is it possible to satisfy the condition?

(In the exposition of Part II [p. 33] “Understanding
the problem” is subdivided into two stages: “Getting ac-
quainted” and “Working for better understanding.”)

8. Example. Let us iliustrate some of the points ex-
plained in the foregoing section. We take the following

. simple problem: Find the diagonal of a rectangular paral-

lelepiped of which the length, the width, and the height
are known.

In order to discuss this problem profitably, the students
must be familiar with the theorem of Pythagoras, and
with some of its applications in plane geometry, but they
may have very little systematic knowledge in solid geom-
etry. ‘The teacher may rely here upon the student’s un-
sophisticated familiarity with spatial relations,

The teacher can make the problem interesting by
making it concrete. The classroom is a rectangular paral-
lelepiped whose dimensions could be measured, and can
be estimated; the students have to find, to “measure
indirectly,” the diagonal of the classroom. The teacher
points out the length, the width, and the height of the
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classroom, indicates the diagonal with a gesture, a.nd
enlivens his figure, drawn on the blackboard, by referring
atedly to the classroom.
1-‘E]?']T‘ehe diyalogue between the teacher and the students
may start as follows:
“What is the unknown?”’ o
“The length of the diagonal of a parallelepiped.
“W hat are the data?” . iy
“The length, the width, and the height of the parallele-

iped.” . .
P ?‘Introduce suitable notation. Which letter should de-

note the unknown?”

" rr

“"- hich letters would you choose for the length, the
width, and the height?”

“a,b,c” )

“What is the condition, linking &, b, ¢, and x?-

“y i3 the diagonal of the parallelepiped 0{- wh1:,h a, b,
and ¢ are the length, the width, and t.he‘ height.”

“Is it a reasonable problem? I mean, is the condition

] etermine the unknown?”

suquCL?ti: ‘;j 1f we khow a, b, ¢, we know the pa_rallele—
piped. If the parallelepiped is determined, the diagonal
i ined.” |
) g?tg:fising a plan, We have a plan whe:n we know, or
know at least in outline, which calculations, computa-
tions, or constructions we have to perform 1 o?'der to
obtain the unknown. The way from understanding the
problem to conceiving a plan may be long -and tortuous.
1n fact, the main achievement in the SOll.lthI‘l c:f a prob-
lem is to conceive the idea of a plan. This idea 11.1:113(
emerge gradually. Or, after apparently unsuccess:.]gl trials
and a period of hesitation, it may occur suddenly, mda
flash, as a “bright idea.” The best thar, the teacher can do
for the student is to procure for him, by unobtrusive

9. Devising a Plon 9

belp, a bright idea. The questions and suggestions we are
going to discuss tend to provoke such an idea.

In order to be able to see the student’s position, the
teacher should think of his own experience, of his difh-
culties and successes in solving problems.

We know, of course, that it is hard to have a good idea
if we have little knowledge of the subject, and impossible
to have it if we have no knowledge. Good ideas are based
on past experience and formerly acquired knowledge.
Mere remembering is not enough for a good idea, but we
cannot have any good idea without recollecting some
pertinent facts; materials alone are not enough for con-
structing a house but we cannot construct a house with-
out collecting the necessary materials. The materials
necessary for solving a mathematical problem are certain
relevant items of our formerly acquired mathematical
knowledge, as formerly solved problems, or formerly
proved theorems. Thus, it is often appropriate to start

- the work with the question: Do you know a related
- problem? '

The difficulty is that there are usvally too many prob-
lems which are somewhat related to our present problem,
that is, have some point in common with it. How can we
choose the one, or the few, which are really useful? There
i5 a suggestion that puts our finger on an essential com-
mon point: Look at the unknown! And try to think of a
familiar problem having the same or a similar unknown.

H we succeed in recalling a formerly solved problem
which is closely related to our present problem, we are
lucky, We should try to deserve such luck; we may de-
serve it by exploiting it. Here is a problem related to
yours and solved before. Could you use 1t?

The foregoing questions, well understood and seriously

- considered, very often help to start the right train of

ideas; but they cannot help always, they cannot work
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magic. If they do not work, we must look around for some
other appropriate point of contact, and explore the vari-
ous aspects of our problem; we have to vary, to transform,
to modify the problem. Could you restate the problem?
Some of the questions of our list hint specific means to
vary the problem, as generalization, specialization, use of
analogy, dropping a part of the condition, and so on; the
details are important but we cannot go into them now.
Variation of the problem may lead to some appropriate
auxiliary problem: If you cannot solve the proposed
problem try to solve first some related problem.

Trying to apply various known problems or theorems,
considering various modifications, experimenting with
various auxiliary problems, we may stray sO far from our
otiginal problem that we are in danger of losing it alto-
gether. Yet there is a good question that may bring us
back to it: Did you use all the data? Did you use the
whole condition?

10. Example. We return to the example considered in
section 8. As we left it, the students just succeeded in
understanding the problem and showed some mild inter-
est in it. They could now have some ideas of their own,

some initiative. If the teacher, having watched sharply,
cannot detect any sign of such initiative he has to resume

carefully his dialogue with the students. He must be pre-

pared to repeat with some modification the questions

which the students do not answer. He must be prepared

to meet often with the disconcerting silence of the

students (which will be indicated by dois ..... y.
“Do you know a related problem?”

“Well, what is the unknown?”’

10. Example 11

*“The diagonal of a parallelepiped.”
Do you know any problem with the same unknown?”

"‘No. We have not had any problem yet about the
diagonal of a parallelepiped.”

“Do you know any problem with a similar unknown?”

-----

“‘.lou see, the diagonal is a segment, the segment of a
straight line. Did you never solve a problem whose un-
known was the length of a line?”

“Of course, we have solved such problems. For instance,
to find a side of a right triangle.”

“Good! Here is a problem related to yours and solved
before. Could you use 182"

. “You were lucky enough to remember a preblem which
is related to your present one and which you solved

/

/’

b

FIG. 1

before. Would you like to use it? Could you introduce
some auxiliary element in order to make its use possible?”
“Look here, the problem you remembered is about a
triangle. Have you any triangle in your figures”
Let us hope that the last hint was explicit enough to
provoke the idea of the solution which is to introduce
a right triangle, {emphasized in Fig. 1) of which the
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required diagonal is the hypotenuse. Yet the Feacher
should be prepared for the case that even this fairly ex-
plicit hint is insufficient to shake the torpor of the stu-
dents; and so he should be prepared to use a whole
gamut of more and more explicit hints.

“Would you like to have a triangle in the figure?”

“What sort of triangle would you like to have in the
figure?” _

“You cannot find yet the diagonal; but you said that
you could find the side of a triangle. Now, what will you
do?” _

“Could you find the diagonal, if it were 2 side of a
triangie?”

When, eventually, with more or less help, the students
succeed in introducing the decisive auxiliary element, the
right triangle emphasized in Fig. 1, the teacher should
convince himself that the students see sufficiently far
ahead before encouraging them to go into actual calcula-
tions.

«] think that it was a good idea to draw that triangle.
You have now a triangle; but have you the unknown?”

“The unknown is the hypotenuse of the triangle; we
can calculate it by the theorem of Pythagoras.”

“You can, if both legs are known; but are the}r?”_

“One leg is given, it is ¢. And the other, I think, is not
difficult to find. Yes, the other leg is the hypatenuse of

another right triangle.” )

“Very goodl Now I see that you have a plan.

11. Carrying out the plan. To devise a plan, to con-
ceive the idea of the solution is not easy. It takes so much
to succeed; formerly acquired knowledge, good mental
habits, concentration upon the purpose, .and one mf)re
thing: good luck. To carry out the plan is much easier;
what we need is mainly patience. .

The plan gives a general outline; we have to convince

rz. Example 15

ourselves that the details fit into the outline, and so we
have to examine the details one after the other, patiently,
till everything is perfectly clear, and no obscure corner
remains in which an error could be hidden.

If the student has really conceived a plan, the teacher
has now a relatively peaceful time. The main danget is
that the student forgets his plan. This may easily happen
if the student received his plan from outside, and ac-
cepted it on the authority of the teacher; but if he worked
for it himself, even with some help, and conceived the
final idea with satisfaction, he will not lose this idea
easily. Yet the teacher must insist that the student should
check each step.

We may convince ourselves of the correctness of a step
in our reasoning either “intuitively” or “formally.” We
may concentrate upon the point in question till we see
it so clearly and distinctly that we have no doubt that
the step is correct; or we may derive the point in ques-
tion according to formal sules. (The difference between
“insight” and “form:! proof” is clear enough in many
important cases; we may leave further discussion to
philosophers.)

"The main point is that the student should be honestly
convinced of the correctness of each step. In certain cases,
the teacher may emphasize the difference between “see-
ing” and “proving”: Can you see clearly that the step is
correct? But can you also prove that the step is correct?

12. Example. Let us resume our work at the point
where we left it at the end of section 10. The student, at
last, has got the idea of the solution. He sees the right
triangle of which the unknown x is the hypotenuse and
the given height ¢ is one of the legs; the other leg is the
diagonal of a face. The student must, possibly, be urged
to introduce suitable notation. He should choose y to de-
note that other leg, the diagonal of the face whose sides
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are @ and b. Thus, he may see more clearly the idea of the
solution which is to introduce an auxiliary problem
whose unknown is y. Finally, working at one right tri-
angle after the other, he may obtain (see Fig. 1)

X2 — J’z + %
y2 — az + bz
and hence, eliminating the auxiliary unknown y,
22 = a2 + b2 o2
x =+ + %+ 2.

The teacher has no reason to interrupt the student if
he carries out these details correcily except, possibly, to
warni him that he should check each step. Thus, the
teacher may ask:

“Gan you se¢ clearly that the triangle with sides x, , ¢
is a right triangle?”

To this question the student may answer honestly
“Yes” but he could be much embarrassed if the teacher,
not satisfied with the intuitive conviction of the student,
should go on asking: )

“But can you prove that this triangle is a right tri-
angle?” .

Thus, the teacher should rather suppress this question
unless the class has had a good initiation in solid geome-
try. Even in the latter case, there is some danger that tl'te
answer to an incidental question may become the main
difficulty for the majority of the students.

13. Looking back. Even fairly good students, whffn
they have obtained the solution of the problem and writ-
ten down neatly the argument, shut their baoks and look
for something else. Doing so, they miss an important and
instructive phase of the work. By looking back at Phe
completed solution, by reconsidering and reexammmg

the result and the path that led to it, they could consoli-
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date their knowledge and develop their ability to solve
problems. A good teacher should understand and impress
on his students the view that no problem whatever is com-
pletely exhausted. There remains always something to do;
with sufficient study and penetration, we could improve
any solution, and, in any case, we can always improve our
understanding of the solution.

The student has now carried through his plan. He has
written down the solution, checking each step. Thus, he
should have good reasons to believe that his solution is
correct. Nevertheless, errors are always possible, especially
if the argument is long and involved. Hence, verifications
are desirable. Especially, if there is some rapid and in-
tuitive procedure to test either the result or the argument,
it should not be overlooked. Can you check the result?
Can you check the argument?

In order to convince ourselves of the presence or of the
quality of an object, we like to see and to touch it. And
as we prefer perception through two different senses, so
we prefer conviction by two different proofs: Can you de-
rive the result differently? We prefer, of course, a short
and intuitive argument to a long and heavy one: Can you
see it at a glance?

One of the first and foremost duties of the teacher is
not to give his students the impression that mathematical
problems have little connection with each other, and no
connection at all with anything else. We have a natural
opportunity to investigate the connections of a problem
when looking back at its solution. The students will find
looking back at the solution really interesting if they
have made an honest effort, and have the consciousness
of having done well. Then they are eager to se¢ what else
they could accomplish with that effort, and how they
could do equally well another time. The teacher should
encourage the students to imagine cases in which they
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could utilize again the procedure used, or apply the re-
sult obtained. Can you use the resuli, or the method, for
some other problem?

14. Example. In section 12, the students finally ob-
tained the solution: If the three edges of a rectangular
parallelogram, issued from the same corner, are a, b, ¢,
the diagonal is

VITE TR

Can you check the result? The teacher cannot expect 2
good answer to this question from inexperienced stu-
dents. The students, however, should acquire fairly early
the experience that problems “in letters” have a great
advantage over purely numerical problems; if the prob-
lem is given “in letters” its result is accessible to several
tests to which a problem “in numbers” 1s not susceptible
at ail. Our example, although fairly simple, is sufficient
to show this. The teacher can ask several questions about
the result which the students may readily answer with
“Yes"; but an answer “No” would show a serious flaw in
the result,

“Did you use all the data? Do all the data a,/,b, c
appear in your formula for the diagonal?”

“Length, width, and height play the same role in our
question; our problem is symmetric with respect to a, b, ¢
Is the expression you obtained for the diagonal sym-
metric in a, b, ¢? Does it remain unchanged when ¢, b, ¢
are interchanged?”

“Qur problem is a problem of solid geometry: to .ﬁnd
the diagonal of a parallelepiped with given dimensions
a, b, c. Our problem is analogous to a problem of p¥ane
geometry: to find the diagonal of 2 rectangle with given
dimensions a, b. Is the result of our ‘solid’ problem anal-
ogous to the result of the ‘plane’ problem?” -

“If the height ¢ decreases, and finally vanishes, the

14. Example 17

- parallelepiped becomes a parallelogram. If you put ¢ = o

in your formula, do you obtain the correct formula for
the diagonal of the rectangular parallelogramy”

“If the height ¢ increases, the diagonal increases. Does
your formula show this?”’

“If all three measures e, &, ¢ of the parallelepiped in-
crease in the same proportion, the diagonal also increases
in the same proportion. If, in your formula, you substi-
tute 124, 128, 12¢ for 4, b, ¢ respectively, the expression of
the diagonal, owing to this substitution, should also be
multiplied by 12. Is that so?”

“If a, b, ¢ are measured in feet, your formula gives the
diagonal measured in feet too; but if you change all meas-
ures into inches, the formula should remain correct. Is
that so?”

(The two last questions are essentially equivalent; see

" TEST BY DIMENSION.)

These questions have several good effects. First, an in-
telligent student cannot help being impressed by the fact
that the formul% passes so many tests. He was convinced
before that the formula is correct because he derived it

- carefully. But now he is more convinced, and his gain in

confidence comes from a different source; it is due to a
sort of “experimental evidence.” Then, thanks to the
foregoing questions, the details of the formula acquire
new significance, and are linked up with various facts.
The formula has therefore a better chance of being re-
membered, the knowledge of the student is consalidated.
Finally, these questions can be easily transferred to simi-
lar problems. After some experience with similar prob-
lems, an intelligent student may perceive the underlying
general ideas: use of all relevant data, variation of the
data, symmetry, analogy. If he gets into the habit of
directing his attention to such points, his ability to solve
problems may definitely profi.
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Can you check the argument? To recheck the argument
step by step may be necessary in difficult and important
cases. Usually, it is enongh to pick out “touchy” points
for rechecking. In our case, it may be advisable to discuss
retrospectively the question which was less advisable to
discuss as the solution was not yet attained: Can you
prove that the triangle with sides x, y, ¢ 1s a right tri-
angle? (See the end of section 12.)

Can you use the result or the method for some other
problem? With a little encouragement, and after one or
two examples, the students easily find applications which
consist essentially in giving some concrete interpretaiion
to the abstract mathematical elements of the problem.
The teacher himself used such a concrete interpretation
as he took the room in which the discussion takes place
for the parallelepiped of the problem. A duil student may
propose, as application, to calculate the diagonal of the
cafeteria instead of the diagonal of the classroom. If the
students do not volunteer more imaginative remarks, the
teacher himself may put a slightly different problem, for
instance: “Being given the length, the width, and the
height of a rectangular parallelepiped, find the distance
of the center from one of the corners.”

The students may use the result of the problem they
just solved, observing that the distance required is one
half of the diagonal they just calculated. Or they may use
the method, introducing suitable right triangles (the
latter alternative is less obvious and somewhat more
clumsy in the present case) .

After this application, the teacher may discuss the con-
figuration of the four diagonals of the parallelepiped,
and the six pyramids of which the six faces are the bases,
the center the common vertex, and the semidiagonals the
lateral edges. When the geometric imagination of the
students is sufficiently enlivened, the teacher should come
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back to his question: Can you use the result, or the
method, for some other problem? Now there is a better
chance that the students may find some more interesting
concrete interpretation, for instance, the following:

“In the center of the flat rectangular top of a building
which is 21 yards long and 16 yards wide, a flagpole is to
be erected, 8 yards high. To support the pole, we need
four equal cables. The cables should start from the same
point, 2 yards under the top of the pole, and end at the
four corners of the top of the building. How long is each
cable?”

The students may use the method of the problem they
solved in detail introducing a right triangle in a vertical
plane, and another one in a horizontal plane. Or they
may use the result, imagining a rectangular parallele-

piped of which the diagonal, x, is one of the four cables
and the edges are

a =104 b8 c= 6.

By stralghtforward application of the formula, x = 14.5.

For more examples, see CAN YOU USE THE RESULT?

15. Various approaches. Let us still retain, for a while,
the problem we considered in the foregomg sections 8,
10, 12, 14. The main work, the discovery of the plan, was
described in section 10. Let us observe that the teacher
could have proceeded differently. Starting from the same
point as in section 10, he could have followed a somewhat
different line, asking the following questions:

“Do you know any related problem?”

“Do you know an analogous problem?”

“You see, the proposed problem is a problem of solid
geometry. Could you think of a simpler analogous prob-
lem of plane geometry?”

“You see, the proposed problem is about a figure in
space, it is concerned with the diagonal of a rectangular
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parallelepiped. What might be an analogous problem
about a figure in the plane? It should be concerned with
—the diagonal—of—a rectangular—"

“Parallelogram.”

The students, even if they are very slow and indiffer-
ent, and were not able to guess anything before, are
obliged finally to contribute at least a minute part of the
idea. Besides, if the students are so slow, the teacher
should not take up the present problem about the paral-
lelepiped without having discussed before, in order to
prepare the students, the analogous problem about the
parallelogram. Then, he can go on now as follows:

“Here is a problem related to yours and solved before.
Can you use £1?”

“Should you introduce some quxiliary element in order
to make its use possible?” ‘

Eventually, the teacher may succeed in suggesting to
the students the desirable idea. It consists in conceiving
the diagonal of the given parallelepiped as the diagonal
of a suitable parallelogram which must be introduced
into the figure (as intersection of the parallelepiped with
a plane passing through two opposite edges) . The idea is
essentially the same as before (section 10) but the ap-
proach is different. In section 10, the contact with the
available knowledge of the students was established
through the unknown; a formerly solved problem was
_recollected because its unknown was the same as that of
the proposed problem. In the present section analogy
provides the contact with the idea of the solution.

16. The teacher’s method of questioning shown in the
foregoing sections 8, 10, 12, 14, 15 is essentially this:
Begin with a general question or suggestion of our list,
and, if necessary, come down gradually to more specific
and concrete questions or suggestions till you reach one
which elicits a response in the student’s mind. If you
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have to help the student exploit his idea, start again, if
possible, from a general question or suggestion contained
in the list, and return again to some more special one if
necessary; and so on.

Of course, our list is just a first list of this kind; it
seems to be sufficient for the majority of simple cases, but
there is no doubt that it could be perfected. It is impor-
tant, however, that the suggestions from which we start
should be simple, natural, and general, and that their list
should be short.

‘The suggestions must be simple and natural because
otherwise they cannot be unobtrusive.

‘The suggestions must be general, applicable not only
to the present problem but to problems of all sorts, if
they are to help develop the ability of the student and not
just a special technique.

The list must be short in order that the questions may
be often repeated, unartificially, and under varying cir-
cumstances; thus, there is a2 chance that they will be
eventually assimilated by the student and will contribute
to the development of a mental habit,

It is necessary to come down gradually to specific sug-
gestions, in order that the student may have as great a
share of the work as possible.

This method of questioning is not a rigid one; for-
tunately so, because, in these matters, any rigid, mechani-
cal, pedantical procedure is necessarily bad. Our method

~admits a certain elasticity and variation, it admits various
approaches (section 15), it can be and should be so

applied that questions asked by the teacher could have
occurred to the student himself.

If a reader wishes to try the method here proposed in
his class he should, of course, proceed with caution. He
should study carefully the example introduced in section
8, and the following examples in sections 18, 19, 20. He
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should prepare carefully the examples which he intends
to discuss, considering also various approaches. He should
start with a few trials and find out gradually how he can
manage the method, how the students take it, and how
much time 1t takes.

17. Good questions and bad questions. If the method
of questioning formulated in the foregoing section is well
understood it helps to judge, by comparison, the quality
of certain suggestions which may be offered with the in-
tention of helping the students.

Let us go back to the situation as it presented itself at
the beginning of section 10 when the question was asked:
Do you know a related problem? Instead of this, with the
best intention to help the students, the question may be
offered: Could you apply the theorem of Pythagoras?

The intention may be the best, but the question is about
the worst. We must realize in what sitnation it was of-
fered; then we shall see that there is a long sequence of
objections against that sort of “help.”

(1) If the student is near to the solution, he may un-

derstand the suggestion implied by the question; but if

he is not, he quite possibly will not see at all the point at
which the question is driving. Thus the question fails to
help where help is most needed.

() If the suggestion is understood, it gives the whole
secret away, very little remains for the student to do.

(39 The suggestion is of too special a nature. Even if
the student can make use of it in solving the present
problem, nothing is learned for future problems. The
question is not instructive.

(4) Even if he understands the suggestion, the student
can scarcely understand how the teacher came to the idea
of putting such a question. And how could he, the stu-
dent, find such a question by himself? It appears as an
unnatural surprise, as a rabbit pulled out of a hat; it is
really not instructive.

18. A Problem of Consiruction 23

None of these objections can be raised against the pro-
cedure described in section 10, or against that in sec-
tion 15,

MORE EXAMPLES

18. A problem of construction. Inscribe a square in a
given triangle. Two vertices of the square should be on
the base of the triangle, the two other vertices of the
square on the two other sides of the triangle, one on each.

“What is the unknown?”

“A square.”

“What are the data?”

“A triangle is given, nothing else.”

“What is the condition?”

*“The four corners of the square should be on the per-
imeter of the triangle, two corners on the base, one cor-
ner on each of the other two sides.”

“Is it possible to satisfy the condition?”

“I think $¢. I am not so sure.”

‘ “You do not seem to find the problem too easy. If you
cannot solve the proposed problem, try to solve first some
related problem. Could you satisfy a part of the con-
dition?”

“What do you mean by a part of the condition?”

“You see, the condition is concerned with all the ver-
tices of the square. How many vertices are there?”

“Four.”

- “A part of the condition would be concerned with less
than four vertices. Keep only a part of the condition,
drop the other part. What part of the condition is easy
to satisfy?”

“It is easy to draw a square with two vertices on the

perimeter of the triangle—or even one with three vertices
on the perimeter!”

“Draw a figure!”
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The student draws Fig. 2. N
“You kept only a part of the condition, and you
dropped the other part. How far is the unknown now

determined?”

FIG. 2

“The square is not determined if it has only three
vertices on the perimeter of the mriangle.

“Good! Draw a figure.”
The student draws Fig. 3.

FIG. §

“The square, as you said, is not determined by the part
of the condition you kept. How can it vary?

“Three corners of your square are on the perimeter of
the triangle but the fourth corner is not yet there “{heile
it should be. Your square, as you said, is undetermined,
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it can vary; the same is true of its fourth corner. How
can it vary?”

“Try it experimentally, if you wish. Draw more squares
with three corners on the perimeter in the same way as
the two squares already in the figure. Draw smail squares
and large squares. What seems to be the locus of the
fourth corner? How can it vary?”

The teacher brought the student VEry near to the
idea of the solution. If the student s able to guess that
the locus of the fourth corner is 2 straight line, he has
got1t,

19. A problem to prove. Two angles are in different
blanes but each side of one is parallel to the correspond-
ing side of the other, and has also the same direction.
Prove thai such angles are equal.

What we have to prove is a fundamental theorem of
solid geometry. The problem may be proposed to stu-
dents who are .familiar with plane geometry and ac.
quainted with those few facts of solid geometry which
prepare the present theorem in Euclid’s Elements, (The
theorem that we have stated and are going to prove is the
Pyoposition 10 of Book XI of Euclid.) Not only ques-
tions and suggestions quoted from our ljst are printed
in italics but also others which correspond to them as
“problems to prove” correspond to “problems to find.”
(The correspondence is worked out systematically in
PROBLEMS TQ FIND, PROBLEMS TO PROVE 5, 6.)

“What is the hypothesisz”

“TI'wo angles are in different planes. Each side of one
is parallel to the corresponding side of the other, and has
also the same direction.

“What is the conclusion?”

“The angles are equal.”

“Draw a figure. Introduce suitqble notation.”
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The student draws the lines of Fig. 4 and chooses,
helped more or less by the teacher, the letters as in Fig. 4.

“What is the hypothesis? Say it, please, using your nota-
tion.” '

“A, B, C are not in the same plane as 4’, B, C’. And
AB | A’B’, AC || A°C’. Also AB has the same direction as
A’B’, and AG the same as 4'¢7.”

B

FIG. 4

“What is the conclusion?”

“/BAC = L BAC

“Look at the conclusion! And try to think of a familiay
theorem having the same or a similar conclusion.”

“If two triangles are congruent, the cerresponding
angles are equal.”

“Very good! Now here is a theorem related to yours
and proved before. Could you use it?”

“I think so but I do not see yet quite how.”

“Should you introduce some auxiliary element in order
to make its use posstble?”

“Well, the theorem which you quoted so well is about
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triangles, about a pair of congruent triangles. Have you
any triangles in your figure?”’

“No. But I could introduce some. Let me join B to C,
and B’ to €. Then there are two triangles, A 4ABC,
AA'BC

“Well done. But what are these triangles good for?"”

“To prove the conclusion, /BAC = /B’ A’C'.”

“Good! If you wish to prove this, what kind of tri-
angles do you need?"”

FIG. §

“Congruent triangles. Yes, of course, I may choose B,

C, B, so that
AB - A'B’, AC = A'C'"
“Very good! Now, what do you wish to prove?”
“I wish to prove that the triangles are congruent,
ANABC = A A'B'C.

If T could prove this, the conclusion /BAC = /B’A’C’
would follow immediately.”

“Fine! You have a new aim, you aim at a new conclu-
sion. Look at the conclusion! And try to think of a
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familiar theorem having the same or a similar conclu-
sion.”

“Two triangles are congruent if—if the three sides of
the one are equal respectively to the three sides of the
other.”

“Well done. You could have chosen a worse one. Now
here is a theorem related to yours and proved before.
Could you use tt?”

“I could use it if I knew that BC = B’C".”

“That is right! Thus, what is your aim?”

“To prove that BC = B'C".”

“Try to think of a familiar theorem having the same or
a similar conclusion.”

“Yes, 1 know a theorem finishing: ‘. . . then the two
Tines are equal.” But it does not fit in.”

“Should you introduce some auxiliary element in order
to make its use possible?”

“You see, how could you prove BC = B'C’ when there
is no connection in the figure between BC and B'C/?”

“Did you use the hypothesis? What is the hypothesis?”

“We suppose that AB |l A’B’, AC | A’C’. Yes, of course,
I must use that.”

“Did you use the whole hypothesis? You say that AB |l
A’B’. Ts that all that you know about these lines?”

“No; 4B is also equal to A’B’; by construction. They
are parallel and equal to each other. And so are AC and
ac’

“Two parallel lines of equal length—it is an interesting
configuration. Have you seen it before?”

“Of course! Yes! Parallelogram! Let me join 4 to A,
BtoB,and Cto C"”

“The idea is not so bad. How many parallelograms

have you now in your figure?”
«Two. No, three. No, two. [ mean, there are two of
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which you can prove immediately that they are paral-
lelograms. There i5 a third which seems to be a parallelo-
gram; I hope I can prove that it is one. And then the
proof will be finished!”

We could have gathered from his foregoing answers
that the student is intelligent. But after this last remark
of his, there is no doubt.

_Tllns student is able to guess a2 mathematical result and
to distinguish clearly between proof and guess. He knows
al.so that guesses can be more or less plausible. Really, he
did profit something from his mathematics classes; he
has some real experience in solving problems, he can
conceive and exploit a good idea.

20. A rate problem. Waier is flowing into a conical
vfrssei at the rate 1. The vessel has the shape of a right
arculur cone, with hovizontal base, the verlex pointing
downwards; the radius of the base is a, the altitude of the

L]

R

FIG. 6

cone b. Find the rate at which the surface is rising when

the depth of the water is y. Finally, obtain the numerical

value of the unknown supposing that a = 4 ft., b = g fi.

T =2 cu. ft. per minute, and y = 1 ft. ,
The students are supposed to know the simplest rules

of differentiation and the notion of “rate of change.”
“What are the data?”
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“The radius of the base of the cone a = 4 ft., the alti-
tude of the cone b = § {t., the rate at which the water is
flowing into the vessel r = 2 cu. ft. per minute, ffnd the
depth of the water at a certain moment, y = 1 ft.

“Correct. The statement of the problem seems to sug-
gest that you should disregard, provisionally, the numeri-
cal values, work with the letters, express the unknown in
terms of @, b, r, y and only finally, after having (_Jbtained
the expression of the unknown in letters, substitute the
numerical values. 1 would follow this suggestion. Now,
what is the unknown?”’

“The rate at which the surface is rising when the depth
of the water is .”

“What is that? Could you say it in other terms?”

“The rate at which the depth of the water is in-
creasing.” o )

“What is that? Could you restate it still differentiy?

“The rate of change of the depth of the water.” .

“That is right, the rate of change of y. But what is the
rate of change? Go back to the definition.” o

“The derivative is the rate of change of a function.

“Correct. Now, is y a function? As we said bef-ore, we
disregard the numerical value of y. Can you imagine that
y changes?” . .

“Yes, y, the depth of the water, increases as the time
goes by.”

“Thus, y is a function of what?”

“Of the time £.”

“Good. Introduce suitable notation. How would you
write the ‘rate of change of y' in mathematical symbols?

« D

dt
“Good. Thus, this is your unknown. You have to €x-

press it in terms of g, b, r, y. By the way, one of these data
is a ‘rate.” Which one?”

20. A Rate Problem g1

“r is the rate at which water is flowing into the vessel.”

“What is that? Could you say it in other terms?”

“r 1s the rate of change of the volume of the water in
the vessel.”

“What is that? Could you restate it still differently?
How would you write it in suitable notation?”

(13 — i_]-/: »”
F= d! .
“What is V?”

“The volume of the water in the vessel at the time ¢.”

“Good. Thus, you have to express 9 in terms of a, b,

dt
% , y- How will you do it?”

“If you cannot solve the proposed problem iry to solve
first some related problem. If you do not see yet the con-
nection between %’ and the data, try to bring in some
simpler connection that could serve as a stepping stone,”

“Do you not see that there are other connections? For
instance, are y and ¥ independent of each other?”

“No. When y increases, ¥ must increase too.”

“Thus, there is a connection. What is the connection?”

“Well, ¥ is the volume of a cone of which the altitude
is y. But I do not know yet the radius of the base.”

“You may consider it, nevertheless. Call it something,
say x.”

“V - &2)’ .”
3
“Correct. Now, what about x? Is it independent of y?”
“No. When the depth of the water, 9, increases the
radius of the free surface, x, increases too.”
“Thus, there is a connection. What is the connection?”
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“Of course, similar triangles.
x1y=a:b”
“One more connection, you see. I would not miss
profiting from it. Do not forget, you wished 1o know the
connection between ¥ and y.”

“1 have
X = 2
wraty? |,
)

“Very good. This looks like a stepping stone, dpes it
not? But you should not forget your goal, What is the

unknown?”

[ dy R
We].l, -'d—t

. dy dV
“You have to find a connection between —, —-, and
other quantities. And here you have one between ¥, ¥,

and other quantities. What to do?”
“Differentiate! Of coursel

daV _ mddyt dy
P
Here it is.” . ;
“Fine! And what about the numerical values?

“Ifa=4,b=3,%?=f=2df=Iathcn

__:.TXIBXI@.”

2 9 dt

PART II. HOW TO,SOLVE IT -.
A DIALOGUE ,_347.725-4

i

Getting Acquainted

Where should I start? Start from the statement of the
problem.

What can I do? Visualize the problem as a whole as
clearly and as vividly as you can. Do not concern your-
self with details for the moment.

What can I gain by doing so? You should understand
the problem, familiarize yourself with it, impress its pur-
pose on your mind. The attention bestowed on the prob-

lem may also stimulate your memory and prepare for the
recollection of relevant points.

Working for Better Undersianding

Where should I start? Start again from the statement

- of the problem. Start when this statement is so clear to

you and s0 well impressed on your mind that you may
lose sight of it for a while without fear of losing it alvo-
gether.

What can I do? Isolate the principal parts of your
problem. The hypothesis and the conclusion are the

- principal parts of a “problem to prove”; the unknown,
- -the data, and the conditions are the principal parts of a
. “problem to find.” Go through the principal parts of

your problem, consider them one by one, consider them
in turn, consider them in various combinations, relating
each detail to other details and each to the whole of the
problem,

33
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What can 1 gain by doing so? You should prepare and
clarify details which are likely to play a role afterwards.

Hunting for the Helpful Idea

Where should I start? Start from the consideration of
the principal parts of your problem. Start when these
principal parts are distinctly arranged and clearly con-
ceived, thanks to your previous work, and when your
memory seems responsive.

What can I do? Consider your problem from yarious
sides and seek contacts with your formerly acquired
knowledge.

Consider your problem from various sides. Emphasize
different parts, examine different details, examine the
same details repeatedly but in different ways, combine
the details differently, approach them from different
sides. Try to see some new meaning in each detail, some
new interpretat on of the whole.

Seek contacts with your formerly acquired knowledge.
Try to think of what helped you in similar situations in
the past. Try to recognize something fampiliar in what you
examine, try to perceive something useful in what you
recognize.

What could I perceive? A helpful idea, perhaps a de-
cisive idea that shows you at a glance the way to the very
end.

How can an idea be helpful? It shows you the whole of
the way or a part of the way; it suggests to you more or
less distinctly how you can proceed. Ideas are more
or less complete. You are lucky if you have any idea at
all.

What can I do with an incomplete idea? You should
consider it. If it looks advantageous you should consider
it longer. If it looks reliable you should ascertain how

A Dialogue 25

iz;;- nir;hI;ad;1 you,dand reconsider the situation. The situa
s changed, thanks to your hel i :
hange ptul idea. Consid

th_e new situation from various sides and seek cozstlacetr
WI;:;I; J;;rour formerly acquired knowledge. 5
and hziecan I Eam f?y doing so again? You may be hucky

another idea. Perhaps your next id i
: : 11 lead

you to the solution right awa “eed

y. Perhaps you need a f
more helpful ideas after the n il be
ext. Perhaps you will b
i::ed astrafy by some of your ideas. Neverthelessyyou shoulg
b gr;tehul for all new ideas, also for the lesser ones, also
in; Zoc:n ea;y ones, also for the supplementary ideas add-
recision to a hazy one, or attemptin

! , th -
rection of a less fortunate one. Even if youp dognotehzc:;a
any appl:eaable new ideas for a while you should be
grateful if your conception of the problem becomes more

complete or more coh
erent, more hom
balanced. ogeneous or better

»

€Carrying Out the Plan

| dWhere should I s-ra:rt? Start from the lucky idea that
ed you to the solution. Start when you feel sure of
grasp of the main connection and you feel conﬁdentt?xur
yov.;v ;:111 supply the minor details that may be wanting *
trough in detal a1l the s1gchrate o geomeiric opére
! ] gebraic or geometric opera-
téons -Whlch you have recognized previously as feagf)lz.
onvince }:ourself of the correctness of each step by for-
ﬁzl r;:fasonmg, or by intuitive insight, or both ways 1'); you
guﬂ;h “yc;ur”problem is :ery complex you may distin-
Bu great” steps and “small” steps, each great step
ing composed of several small ones. Check first the
gri;tkst:ps, and get down to the smaller ones afterwards.
somtia canCh I gain by fio:'n-g s0? A presentation of the
on each step of which is correct beyond doubt,
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Looking Back

Where should I start? From the solution, complete and
correct in each detail.

What can I do? Consider the solution from various
sides and seek contacts with your formerly acquired
knowledge.

Consider the details of the solution and try to make
them as simple as you can; survey more extensive parts
of the solution and try to make them shorter; try to see
the whole solution at a glance. Try to modify to their
advantage smaller or larger parts of the solutiomn, try to
improve the whole solution, to make it intuitive, to fit it
into your formerly acquired knowledge as naturally as
possible. Scrutinize the method that led you to the
solution, try to see its point, and try to make use of it for
other problems. Scrutinize the result and try to make use
of it for other problems.

What can I gain by doing s0? You may find a new and
better solution, you may discover NEwW and interesting
facts. In any case, if you get into the habit of surveying
and scrutinizing your solutions in this way, you will
acquire some knowledge well ordered and ready to use,
and you will develop your ability of solving problems.

PART III. SHORT DICTIONARY
OF HEURISTIC

_Analogy is a sort of similarity. Similar objects agree
?\mh eac-:h other in some respect, analogous objects agree
i1 certain relations of their respective parts. *

1. A rectangular parallelogram is analogous to a rec-
tangu.lar paralielepiped. In fact, the relations between
the sides of the parallelogram are similar to those b
tween thej faces of the parallelepiped: ”

Each. stde of the parallelogram is parallel to just one
otlIJ;:er cs};:de, and 1s perpendicular to the remaining sides.
Otl‘_la " face of t.he parallel‘epiped 1s parallel to just one

er face, and is perpendicular to the remaining faces

Let us agree to call a side 2 “bounding element” of the:
parallelogram and a face a “bounding element” of th
pa}'allelepiped. Then, we may contract the two fort:

EOgEgess:tatemems into one that applies equally to both
boﬁzcé;ﬂl;o;zil:ngt ele;n.ent is parfillel to just one other
boondins elemem:n is perpendicular to the remaining
00;1’1'1;11::;1 :ietll;ave expressed certain relations which are
come e two systems of objects we compared, sides
L the rectangle and faces of the rectangular parallele-
plpec.l. The analogy of these systems consists in this ¢
munity of relations. o

‘2. Analogy pervades all our thinking, our everyday

 spee .. .
- 8P ch and our trivial conclusions as well as artistic

w . .
ays of expression and the highest scientific achieve.

¢ ments. Analogy is used on very different levels. People

37
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often use vague, ambiguous, incomplete, or incompletely
clarified analogies, but analogy may reach the level of
mathematical precision. All sorts of analogy may play a
role in the discovery of the solution and so we should
not neglect any sort.

3. We may consider ourselves lucky when, trying to
solve a problem, we succeed in discovering a simpler
analogous problem. In section 19, our original problerm
was concerned with the diagonal of a rectangular paral-
lelepiped; the comsideration of a simpler analogous prob-
lem, concerned with the diagonal of 2 rectangle, led us to
the solution of the original problem. We are going to
discuss one more case of the same sort. We have to solve
the following problem:

Find the center of gravity of a homogeneous tetra-
hedron.

Without knowledge of the integral calculus, and with
little knowledge of physics, this problem is not easy at
all; it was 2 serious scientific problem in the days of
Archimedes or Galileo. Thus, if we wish to solve it with
as little preliminary knowledge as possible, we should
look around for a simpler analogous problem. The corre-
sponding problem in the plane occurs here naturally:

Find the center of gravity of e homogeneous triangle.

Now, we have two questions instead of one. But two
questions may be easier to answer than just one question
—provided that the two questions are intelligently con-
nected. _

4. Laying aside, for the moment, our original problem
concerning the tetrahedron, we concentraie upon the
simpler analogous problem concerning the triangle. To
solve this problem, we have to know something about

centers of gravity. The following principle is plausible

and presents itself naturally.
If a system of masses S consists of parts, each of which

A
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has its center of gravity in the same plane, then this plane
contafns a.Lso the center of gravity of the whole system 8
.Thls principle yields all that we need in the case of th(;
trfangle. ¥irst, ic implies that the center of gravity of the
trlarfgle lies in the plane of the triangle. Then zve ma
‘c‘onmd-er the triangle as consisting of fibers (th’in stri :
}nﬁnltely narrow” parallelograms) parallel to a certalzri
side of -the triangle (the side AB in Fig. 7). The center
of gravity of each fiber (of any parallelogram) is, obvi-
ously, its midpoint, and all these midpoints lie cln the

line joining the vertex C o 1 i
¢ joi ppostte to the side AB t
midpoint M of AB (sec Fig. 7). o

C
-/ 7
Ia 7 5
/ . —7
/ 7 7
A M B
FIG. 7

Any plane passing through the median CM of the tri-
angle contains the centers of gravity of all parallel fibers
which c.onstitute the triangle. Thus, we are led to the
conclus'lon that the center of gravity of the whole tri
angle lies on the same median. Yet it must lie on th(;
otl"fer th) medians just as well, it must be the common
pomt. of tniersection of all three medians.

It is desirable to verify now by pure geometry, inde-

penc}ently of any mechanical assumption, that the three
medians meet in the same point. '
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5. After the case of the triangle, the case of the tetra-
hedron is fairly easy. We have now solved a problen;
analogous to our proposed problem and, having solve
it, we have a model to follow. ‘

In solving the analogous problem which we use now as
a2 model, we conceived the triangle ABC as consmtmg-of
fibers parallel to one of its sides, AB. Now, we CONceive
the tetrahedron ABCD as consisting of fibers parallel to

its edges, AB. )
On;“;}li: mid?oints of the fibers whic'h constituFe the t;'ll-
angle lie all on the same straight line, a 1::1ed1an of tth e
triangle, joining the midpoint M of the side AB. to the
opposite vertex C. The midpoints of the fibers wh1.ch. cop-
stitute the tetrahedron lie all in the same pla:ne, joining
the midpoint M of the edge AB to the opposite 'edge cD

(see Fig. 8) ; we may cail this plane MCD a median plane

of the tetrahedron.

D

A M B

FIG. 8

In the case of the triangle, we had three medians 11.ke
MC, each of which has to contain the cer.n.er of gravm{
of the triangle. Therefore, these three medians must mele
in one point which is precisely the center of gravity. In

Analogy $1

the case of the tetrahedron we have six median planes
like MCD, joining the midpoint of some edge to the op-
posite edge, each of which has to contain the center of
gravity of the tetrahedron. Therefore, these six median
planes must meet in one point which is precisely the
center of gravity.

6. Thus, we have solved the problem of the center of
gravity of the homogeneous tetrahedron. To complete
our solution, it is desirable to verify now by pure geome-
try, independently of mechanical considerations, that the
six median planes mentioned pass through the same
point.

When we had solved the problem of the center of grav-
ity of the homogeneous triangle, we found it desirable
to verify, in order to complete our solution, that the three
medians of the triangle pass through the same point.
This problem is analogous to the foregoing but visibly
simpler. o

Again we may use, in solving the problem concerning
the tetrahedron, the simpler analogous problem concern-
ing the triangle (which we may suppose here as solved).
In fact, consider the three median planes, passing
through the three edges DA, DB, DC issued from the
vertex D; each passes also through the midpoint of the

. opposite edge (the median plane through DC passes

through A, sece Fig. 8). Now, these three median planes
intersect the plane of A ABC in the three medians of this
triangle. These three medians pass through the same
point (this is the result of the simpler analogous prob-

- lem) and this point, just as D, is 2 common point of the

three median planes. The straight line, joining the two
common points, is common to all three median planes.
We proved that those § among the 6 median planes

which pass through the vertex D have a common straight
- line. The same must be true of those § median planes



42 Analogy

which pass through 4; and also of the § median planes
through B; and also of the 3 through C. Connecting
these facts suitably, we may prove that the ¢ median
planes have a common point. (The 3 median planes
passing through the sides of A ABC determine a com-
mon point, and § lines of intersection which meet in the
common point. Now, by what we have just proved,
through each line of intersection one more median plane
must pass.)

7. Roth under 5 and under 6 we used a simpler analo-
gous problem, concerning the triangle, to solve a prob-
iem about the tetrahedron. Yet the two cases are different
in an important respect. Under 5, we used the method of
the simpler analogous problem whose solution we imi-
tated point by point. Under 6, we used the result of the
simpler analogous problem, and we did not care how
this result had been obtained. Sometimes, we may be
able to use both the method and the result of the simpler
analogous problem. Even our foregoing example shows
this if we regard the considerations under 5 and 6 as
different parts of the solution of the same problem.

Our example is typical. In solving a proposed problem,
we can often use the solution of a simpler analogous
problem; we may be able to use its method, or jts result,
or both. Of course, in more difficult cases, complications
may arise which are not yet shown by our example.
Especially, it can happen that the solution of the analo-
gous problem cannot be immediately used for our orig-
inal problem. Then, it may be worth while to reconsider
the solution, to vary and to modify it till, after having
tried various forms of the solution, we find eventually
one that can be extended to our original problem.

8. It is desirable to foresce the result, or, at jeast, some
features of the result, with some degree of plausibility.
Such plausible forecasts are often based on analogy.
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Thus, we may know that the center of gravity of a
hor'nogeneous triangle coincides with the center of gravity
of its three vertices (that is, of three material points with
equal'masses, placed in the vertices of the triangle).
Kno?v,-ng this, we may conjecture that the center of
gravity of a homogeneous tetrahedron coincides with the
center of gravity of its four vertices.

This con'jecture is an “inference by analogy.” Knowing
that the triangle and the tetrahedron are alike in many
respects, we conjecture that they are alike in one more
respect. It would be foolish to regard the plausibility of
such conjectures as certainty, but it would be just as
foollish, or even more foolish, to disregard such plausible
conjectures.

‘Inference by analogy appears to be the most common
kl.nd of conclusion, and it is possibly the most essential
kind. 1t yields more or less plausible conjectures which
may or may not be confirmed by experience and stricter
reasoning. The chemist, experimenting on animals in
order to foresee the influence of his drugs on humans,
draws conclusions by analogy. But 5o did a small boy I
knew. His pet dog had to be taken to the veterinary, and
he inquired:

“Who is the veterinary?”

“The animal doctor.”

“Which animal is the animal doctor?”

9 An analogical conclusion from many parallel cases
Is stronger than one from fewer cases. Yet quality is still
more important here than quantity. Clear-cut analogies
weigh more heavily than vague similarities, systematically
a-rranged instances count for more than random collec-
tions of cases.

In the foregoing (under 8) we put forward a conjec-

ture about the center of gravity of the tetrahedron. This

conjecture was supported by analogy; the case of the
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tetrahedron is analogous to that of the wriangle. We may
strengthen the conjecture by examining one more arfalo—
gous case, the case of a homogeneous rod (that 15, a
straight line-segment of uniform density) .

The analogy between

SEgIIL ent

has many aspects. A segment is contain.ed in a strai'g}}it
line, a triangle in a plane, a tetrahedr.on in _space. Stralg ;
line-segments are the simplest one-dimensional d‘L;oun t; :
figures, triangles the simplest polygons, tetrahedrons
i hedrons.
Sm?li:ﬂss;gent has 2 zero-dimer.lsiopal botfnding; Elt;-
~ments (2 end-points) and its inter.lor is one-d1mensx.ona .
The triangle has § zero—dimensxo.nal and 3 one-dlme.n-
sional bounding elements (g vertices, 3 sidesy and its
i ior 1 imensional.
lnff‘rtizrt:estlzvhﬁron has 4 zero—dimensiox}al, 6 one-dimen-
sional, and 4 two-dimensional l?oun('!mg_ elemen!;s (4
vertices, 6 edges, 4 faces) , and its interior 1s three-dimen-
510;31‘11';56 numbers can be assembled into a table. The suc-
cessive columns contain the numbers for the zero-, one-,
two-, and three-dimensional elements, the successive row?
the numbers for the segment, triangte, and tetrahedron:

triangle tetrahedron

a 1
3 5§ 1
4 6 41

Very little familiarity with the powers of a bn;o}r)mal 11'2

needed to recognize in these numbers a section O ascam

triangle. We found a remarkable regularity in segment,
i nd tetrahedron.

m?::.glff' :lve have experienced that the objects we com-

pare are closely connected, "il}feren'ces b}i analogy,” as

the following, may have a certain weight with us.
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The center of gravity of a homogeneous rod coincides
with the center of gravity of its 2 end-points. The center
of gravity of a homogeneous triangle coincides with the
center of gravity of its g vertices. Should we not suspect
that the center of gravity of a homogeneous tetrahedron
coincides with the center of gravity of its 4 vertices?

Again, the center of gravity of a homogeneous rod
divides the distance between its end-points in the propar-
tion 1: 1. The center of gravity of a triangle divides the
distance between any vertex and the midpoint of the
opposite side in the proportion 2 : 1. Should we not sus-
pect that the center of gravity of a homogeneous tetra-
hedron divides the distance between any vertex and the
center of gravity of the opposite face in the proportion
§:1?

It appears extremely unlikely that the conjectures sug-
gested by these questions should be wrong, that such a
beautiful regularity should be spoiled. The feeling that
harmeonious simple order cannot be deceitful guides the
discoverer both in the mathematical and in the other
sciences, and is expressed by the Latin saying: simplex
sigillum veri (simplicity is the seal of truthy).

[The preceding suggests an extension to n dimensions.
It appears unlikely that what is true in the first three
dimensions, for n = 1, 2, g, should cease to be true for
higher values of n. This conjecture is an “inference by
induction”; it illustrates that induction is naturally based
on analogy. See INDUCTION AND MATHEMATICAL INDUG-

" TION.]

f11. We finish the present section by considering briefly

the most important cases in which analogy attains the
precision of mathematical ideas.

(I} Two systems of mathematical objects, say § and &,

. are so connected that certain relations between the ob-

jects of § are governed by the same laws as those between
the objects of &,
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This kind of analogy between § and § is exemplified
by what we have discussed under 1; take as § the sides of
a rectangle, as 8’ the faces of a rectangular parallelepiped.

(II) There is a one-one correspondence between the
objects of the two systems S and §, preserving certain
relations. That is, if such a relation holds between the
objects of one system, the same relation holds between
the corresponding objects of the other system. Such a
connection between two systems is a Very precise sort of
analogy; it is called isomorphism (or holohedral iso-
mor phism} .

(I11) There is a one-many correspondence between
the objects of the two systems S and § preserving certain
relations. Such a connection (which is important in vari-
ous. branches of advanced mathematical study, especially
in the Theory of Groups, and need not be discussed here
in detail) is called merohedral isomorphism (or homo-
morphism; homoiomorphism would be, perhaps, a better
term). Merohedral isomorphism may be considered as
another very precise sort of analogy.]

Auxiliary elements. There is much more in our con-
ception of the problem at the end of our work than was
‘0 it as we started working (PROGRESS AND ACHIEVEMENT,
1) . As our work progresses, we add new elements to those
originally considered. An element that we introduce in
the hope that it will further the solution is called an
auxiliary element.

1. There are various kinds of auxiliary elements, Solv-
ing a geometric problem, we may introduce new lines
into our figure, quxiliary lines. Solving an algebraic prob-
lem, we may introduce an auxiliary unknown {AUXILIARY
PROBLEMS, 1). An auxiliary theorem is a theorem whaose
proof we undertake in the hope of promoting the solution
of our original problem.
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2. There are various reasons for introducing auxiliary
elernents. We are glad when we have succeeded in recol-
lecting a problem related to ours and solved before. It is
probable that we can use such a problem but we do not
know yet how to use it. For instance, the problem which
we are trying to solve is a geometric problem, and the
related problem which we have solved before and have
now succeeded in recollecting is a problem about tri-
angles. Yet there is no triangle in our figure; in order to
make any use of the problem recollected we must have a
triangle; therefore, we have to introduce one, by adding
suitable auxiliary lines to our figure. In general, having
recollected a formerly solved related problem and wish-
ing to use it for our present one, we must often ask:
Should we introduce some auxiliary element in order to
make its use possible? (The example in section 10 is
typical.)

Going back to definitions, we have another opportu-
nity to introduce auxiliary elements. For instance, expli-
cating the definition of a circle we should not only
fnention its center and its radius, but we should also
introduce these geometric elements into our figure. With-
out introducing them, we could not make any concrete
use of the definition; stating the definition without
drawing something is mere lip-service.

- Trying to use known results and going back to defini-
tions are among the hest reasons for introducing auxil-
iary elements; but they are not the only ones. We may
add auxiliary elements to the conception of our problem
in order to make it fuller, more suggestive, more familiar
although we scarcely know yet explicitly how we shall
E)e able to use the elements added. We may just feel that
it is a “bright idea” to conceive the problem that way
with such and such elements added.

We may have this or that reason for introducing an
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auxiliary element, but we should have some reason. We

should not introduce auxiliary elements wantogly.
3. Example. Construct a triangle, being given one
angle, the altitude drawn from the vertex of the given

angle, and the perimeter of the triangle.

A

F1G. 9
A
h
P
FIG. 10

We introduce suitable notation. Let o denote the given
angle, k the given altitude drawn from the verte'x A o.f E
and p the given perimeter. We draw a figure 1in v:hlc
we easily place o and h. Have we used all the data? No,
our figure does not contain the given length p, equal to
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the perimeter of the triangle. Therefore we must intro-
duce p. But how?

We may attempt to introduce P in various ways. The
attempts exhibited in Figs. 9, 10 appear clumsy. If we try
to make clear to ourselves why they appear so unsatis.
factory, we may perceive that it is for lack of symmetry.

In fact, the triangle has three unknown sides a, 5, c.
We call a, as usual, the side opposite to 4; we know that

at+b+c=9p.

Now, the sides b and ¢ play the same role; they are inter-
changeable; our problem is symmetric with respect to b
and ¢. But & and ¢ do not play the same role in our
figures 9, 10; placing the length p we treated & and ¢
differently; the figures 9 and 1o spoil the natural sym-
metry of the problem with respect to b and ¢. We should
place p so that it has the same relation to b as to c.

This consideration may be helpful in suggesting to
place the length p as in Fig. 11. We add to the side a of

FIG. 11

_ the triangle the segment CE of length & on one side and
- the segment BD of the length ¢ on the other side so that
- pappears in Fig. 11 as the line ED of length

b+a+c=1p. .

. If we have some little experience in solving problems of
5 construction, we shall not fail to introduce into the
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figure, along with ED, the auxiliary lines AD and AE,
cach of which is the base of an isosceles triangle. In fact,
it is not unreasonable to introduce elements into the
problem which are particularly simple and familiar, as
isosceles triangle.

We have been quite lucky in introducing our auxiliary
lines. Examining the new figure we may discover that
7 EAD has a simple relation to the given angle . In fact,
we find using the isosceles triangles A ABD and A ACE

that /DAE = :_+ go®. After this remark, it is natural to

try the construction of A DAE. Trying this construction,
we introduce an auxiliary problem which is much easier
than the original problem.

4 Teachers and authors of textbooks should not forget
that the intelligent student and THE INTELLIGENT READER
are not satisfied by verifying that the steps of a reasoning
are correct but also want to know the motive and the
purpose of the various steps. The introduction of an
auxiliary element is a conspicuous Step. If a tricky
auxiliary line appears abruptly in the figure, without any
motivation, and solves the problem surprisingly, intelli-
gent students and readers are disappointed; they feel that
they are cheated. Mathematics is interesting in so far as
it occupies our reasoning and inventive powers. But there
is nothing to learn about reasoning and invention if the
motive and purpose of the most conspicuous step remain
incomprehensible. To make such steps comprehensible
by suitable remarks (as in the foregoing, under 3) or by
carefully chosen questions and suggestions (as in sections
10, 18, 19, 20) takes a lot of time and effore; but it may
be worth while.

Auxiliary problem is a problem which we consider,
not for its own sake, but because we hope that its con-

Auxiliary Problem 51

mc!e::ation may help us to solve another problem, our
or.lgmal problem. The original problem is the en’d we
wish to attain, the auxiliary problém a means by which
we try to attain our end.

'An insect tries to escape through the windowpane
tries the same again and again, and does not try the nex;
window which is open and through which it camé mto
the room. A man is able, or at least should be able, to act
more intelligently. Human superiority consists in’ goin
aJ‘OI'J.I.ld an obstacle that cannot be overcome directly i1g1
devising a suitable auxiliary problem when the ori i’nal
prob%em appears insoluble. To devise an auxiliary grob-
lem is an important operation of the mind. To raise a
clear—cut. new probiem subservient to another problem
to conceive distinctly as an end what is means to anothe;
?nd, is a refined achievement of the intelligence. It is an
important task to learn (or to teach) how to handle
auxiliary problems intelligently.

1. Example. Find x, satisfying the equation

x% — 13x2-- 36 = o.
H we observe that x4 = (x%)2 w

€ ma : -

tage of introducing ) Y see the advan
Yy = x2.
We obtain now a new probl i 1
em; F i
i P ind y, satisfying the
y2— 18y +36=o.

The new problem is an auxiliary problem; we intend to

::fkit as a rfneans of solving our original problem. The

nown of our auxiliary problem, v, i i

called quxiliary unknown, g 1 appropriziely
2. Example. Find the diagonal of a rectangular paral-

lelepiped being gi
g given the lengths of th
from the same corner. gths of three edges drawn
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Trying to solve this problem (section 8) we may be
led, by analogy (section 15), to another problem:
Find the diagonal of a rectangular parallelogram being
given the lengths of two sides drawn from the same
vertex.

The new problem is an auxiliary problem; we consider
it because we hope to derive some profit for the original
problem from its consideration.

3. Profit. The profit that we derive from the consider-
ation of an auxiliary problem may be of various kinds.
We may use the result of the auxiliary problem. Thus, in
example 1, having found by solving the quadratic equa-
tion for y that y is equal to 4 or to g, W€ infer that
x2 = 4 or x2 = g and derive hence all possible values of
x. In other cases, we may use the method of the auxiliary
problem. Thus, in example 2, the auxiliary problem isa
problem of plane geometry; it is analogous to, but sim-
pler than, the original problem which is a problem of
solid geometry. It is reasonable to introduce an auxiliary
problem of this kind in the hope that it will be instruc-
tive, that it will give us opportunity to familiarize our-
selves with certain methods, operations, or tools, which
we may use afterwards for our original problem. In ex-
ample 2, the choice of the auxiliary problem is rather
lucky; examining it closely we find that we can us¢ both
its method and its result. (See section 15, and P YOU
USE ALL THE DATA?)

4. Risk. We take away from the original problem the
time and the effort that we devote to the auxiliary prob-
fem. 1f our investigation of the auxiliary problem fails,
the time and effort we devoted to it may be lost. There-
fore, we should exercise our judgment in choosing an
auxiliary problem. We may have various good reasons
for our choice. The auxiliary problem may appear more
accessible than the original problem; or it may appeatr
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instru(-:tive; or it may have some sort of aesthetic appeal.
?omeumes the only advantage of the auxiliary problem
is that it is new and offers unexplored possibilities; we
choose it because we are tired of the original problem
all approaches to which seem to be exhausted.

5. How to find one. The discovery of the solution of

the Proposed problem often depends on the discovery of
a suitable auxiliary problem. Unhappily, there is no in-
fallible method of discovering suitable auxiliary prob-
lems as there is no infallible method of discovering the
solution. There are, however, questions and suggestions
which are frequently helpful, as LOOK AT THE UNKNOWN,
We are often led to wseful auxiliary problems by varr
ATION OF THE PROBLEM.
) 6. Equivalent problems. Two problems are equivalent
if the solution of each involves the solution of the other.
ThLTS, in our example 1, the original problem and the
auxiliary problem are equivalent.

Consider the following theorems:

A. In any equilateral triangle, each angle is equal
to 60°.

B. In any equiangular triangle, each angle is equal
to 60°.

_These two theorems are not identical. They contain
(f!lﬁerent notions; one is concerned with equality of the
sides, the other with equality of the angles of a triangle.
But each theorem follows from the other. Therefore, the
problem to prove A is equivalent to the problem to

~ prove B,

If we are required to prove A, there is a certain advan-
tage in introducing, as an auxiliary problem, the prob-
lem to prove B. The theorem B is a little easier to prove
than A and, what is more important, we may foresee
that B is easier than A, we may judge so, we may find

) plausible from the outset that B is easier than A. In fact,
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the theorem B, concerned only with angles, is more
“homogeneous” than the theorem A which is concerned
with both angles and sides.

The passage from the original problem to the aux-
iliary problem is called convertible reduction, or bi-
lateral reduction, or equivalent reduction if these two
problems, the original and the auxiliary, are equivalent.
Thus, the reduction of A to B (see above) is convertible
and so is the reduction in example 1. Convertible reduc-
tions are, in a certain respect, more important and more
desirable than other ways to introduce auxiliary prob-
lems, but auxiliary problems which are not equivalent
to the original problem may also be very useful; take
example 2.

7. Chains of equivalent auxiliary problems are fre-
quent in mathematical reasoning. We are required to
solve a problem A; we cannot see the solution, but we
may find that A is equivalent to another problem B.
Considering B we may run into a third problem C equiv-
alent to B. Proceeding in the same way, we¢ reduce G to
D, and so on, until we come upon a last problem L whose
solution is known or immediate. Each problem being
equivalent to the preceding, the last problem L must be
equivalent to our original problem A. Thus we are able
10 infer the solution of the original problem A from the
problem L which we attained as the last link in a chain
of auxiliary problems.

Chains of problems of this kind were noticed by the
Greek mathematicians as we may see from an important
passage of PAPPUS. For an illustration, let us reconsider
our example 1. Let us call (A) the condition imposed
upon the unknown x:

(A) x4 — 13x2+4 g6 = 0.

One way of solving the problem is to transform the pro-
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posed condition into another condition which we shall
call (B):

(B) (2x2) 2 — 2 (2x%) 13+ 144 = 0.

Observe that the conditions (A} and (B) are different.
They are only slightly different if you wish to say so,
they are certainly equivalent as you may easily convince
yourself, but they are definitely not identical. The pas-
sage from (A) to (B) is not only correct but has a clear-
cut purpose, obvious to anybody who is familiar with the
solution of quadratic equations. Working further in the
same direction we transform the condition (B) into still
another condition (C):

(C) (2x2) 2 g (2x2) 13 + 169 = 25.
Proceeding in the same way, we obtain
(D) (2x7 —18)% = 25
(E) 2x% — 18 = *5
®) x2 = 1378
2

(©G) x= = JIB5

2
(H) % =g, Or —§, OF 2, OF —2,

Each reduction that we made was convertible. Thus, the
Jast condition (H) is equivalent to the first condition
(A) so that §, —3, 2, —2 are all possible solutions of our
original equation.

In the foregoing, we derived from an original condi-
tion (A) a sequence of conditions (B), (G), (D}, ...
each of which was equivalent to the foregoing. This
point deserves the greatest care. Equivalent conditions
are satisfied by the same objects. Therefore, if we pass
from a proposed condition to a new condition equivalent
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to it, we have the same solutions. But if we pass from a
proposed condition to a narrower one, we lose solutions,
and if we pass to a wider one we admit improper, adven-
titious solutions which have nothing to do with the pro-
posed problem. If, in a series of successive reductions, we
pass to a narrower and then again to a wider condition
we may lose track of the original problem completely. In
order to avoid this danger, we must check carefully the
nature of each newly introduced condition: Is it equiv-
alent to the original condition? This question is still
more important when we do not deal with a single equa-
tion as here but with a system of equations, or when the
condition is not expressed by equations as, for instance,
in problems of geometric construction.

(Compare PAPPUS, especially comments 2, 3, 4, 8. The
description on p. 143, lines 4-21, is unnecessarily re-
stricted: it describes a chain of “problems 10 find,” each
of which has a different unknown. The example con-
sidered here has just the opposite speciality: all problems
of the chain have the same unknown and differ only in
the form of the condition. Of course, no such restriction
is necessary.)

8. Unilateral reduction. We have two problems, A and
B, both unsolved. If we could solve A we could hence
derive the full solution of B. But not conversely; if we
could solve B, we would obtain, possibly, some informa-
tion about A, but we would not know how to derive the
full solution of A from that of B. In such a case, more 18
achieved by the solution of A than by the solution of B.
Let us call A the more ambitious, and B the less ambt-
tious of the two problemns.

If, from a proposed problem, we pass either to a more
ambitious or to a less ambitious auxiliary problem we
call the step a unilateral reduction. There are two kinds
of unilateral reduction, and both are, in some way Of
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other, more risky than a bilateral or convertible re-
duction.

Our example 2 shows a unilateral reduction to a less
ambitious problem. In fact, if we could solve the original
PI:OblEl‘Il, concerned with a parallelepiped whose length
width, and height are g, b, ¢ respectively, we could move’-
on to the auxiliary problem putting ¢ = ¢ and obtaining
a parallelogram with length ¢ and width 4. For another
example of a unilateral reduction to a less ambitious
problem see SPECIALIZATION, 3, 4, 5. These examples show
tl-la.t, with some luck, we may be able to use a less am-
bitious auxiliary problem as a stepping stone, combining
tht? solution of the auxiliary problem with some appro-
priate supplementary remark to obtain the solution of
the original problem.

Unilateral reduction to a more ambitious problem may
a.lso be successful. (See GENERALIZATION, 2, and the reduc-
tion of the first to the second problem considered in
INDUGTION AND MATHEMATICAL INDUCTION, 1, 2.} In fact,

Ehe more ambitious problem may be more accessible; this
is the INVENTOR'S PARADOX.

. I}olzano, Bernard (178:-1848), logician and mathema-
tician, de'voted an extensive part of his comprehensive
presentation of logic, Wissenschafislehre, to the subject

“of heuristic (vol. 3, pp. 293-575) . He writes about this

part of his work: “I do not think at all that I am able
to present here any procedure of investigation that was
not pt.erceived long ago by all men of talent; and I do not
promise at all that you can find here anything quite new
of this kind. But I shall take pains to state in clear words

the rules and ways of investigation which are followed

by all abl.e men, who in most cases are not even conscious
of following them. Although I am free from the illusion
that I shall fully succeed even in doing this, 1 still hope
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that the little that is presented here may please some
people and have some application afterwards.”

Bright idea, or “good idea,” or ‘‘seeing the light,” is a
colloquial expression describing a sudden advance toward
the solution; se€ PROGRESS AND ACHIEVEMENT, 6. The com-
ing of a bright idea is an experience familiar to every-
body but difficult to describe and so it may be interesting
to notice that a very suggestive description of it has been
incidentally given by an authority as old as Aristotle.

Most people will agree that conceiving a bright idea is
an “act of sagacity.” Aristotle defines “sagacity” as fol-
lows: “Sagacity is a hitting by guess upon the essential
connection in an inappreciable time. As for example, if
you see a person talking with a rich man in a certain
way, you may instantly guess that that person is trying to
borrow money. Or observing that the bright side of the
moon is always toward the sun, you may suddenly per-
ceive why this is; namely, because the moon shines by the
light of the sun.”!

The first example is not bad but rather trivial; not
much sagacity is needed to guess things of this sort about
rich men and money, and the idea is not very bright.
The second example, however, is quite impressive if we
make a little effort of imagination to see it in its proper
setting.

We should realize that a contemporary of Aristotle had
to watch the sun and the stars if he wished to know the
time since there were no wristwatches, and had to ob-
serve the phases of the moon if he planned traveling by
night since there were no street lights. He was much
better acquainted with the sky than the modern city-

1 The text is slightly rearranged. For a more exact transiation see
William Whewell, The Philosophy of the Inductive Sciences (1847}

vol. If, p. 131.

Can You Check the Result? 59

dwe?ler, and his natural intelligence was not dimmed b

undigested fragments of journalistic presemtations 03;
a:w"cmomical theories. He saw the full moon as a flat disc
similar to the disc of the sun but much less bright Hf;
must ha\.re- wondered at the incessant changes in the Sila e
a_nd position of the moon. He observed the moon ocfa-
sionally also at daytime, about sunrise or sunset, and
found out “that the bright side of the moon is a’lways
toward the sun” which was in itself a respectable achieve-
ment. And now he perceives that the varying aspects of
Ehe moon are like the various aspects of a ball which is
illuminated from one side so that one half of it is shiny
and the other half dark. He conceives the sun and the
moon not as flat discs but as round bodies, one giving
and the other receiving the light. He understands the
efisenti.al connection, he rearranges his former concep-
tions instantly, “in an inappreciable time”: there is a

sudcflen leap of the imagination, a bright idea, a flash of
genius.

Can you check the result? Can you check the argu-
mem?f A good answer to these questions strengthens our
trust in the solution and contributes to the solidity of our
knowledge.

1. Numerical results of mathematical problems can be
tested by comparing them to observed numbers, or to a
commonsense estimate of observable numbers. As prob-
lems arising from practical needs or natural curiosity
almost glways aim at facts it could be expected that such
comparisons with observable facts are seldom omitted.
Ye_t every teacher knows that students achieve incredible
things in this respect. Some students are not disturbed
at all when they find 16,130 ft. for the length of the boat
and 8 years, 2 months for the age of the captain who is,
by the way, known to be a grandfather. Such neglect of
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the obvious does not show necessarily stupidity but rather
indifference toward artificial problems.

2. Problems “in letters” are susceptible of more, and
more interesting, tests than “‘problems in numbers” (sec-
tion 14). For another example, let us consider the
frustum of a pyramid with square base. If the side of
the lower base is a, the side of the upper base b, and
the altitude of the frustum h, we find for the volume

02+ab+bzh
————————3 .

We may test this result by SPECIALIZATION. In fact, if
b — a the frustum becomes a prism and the formula
yields a2h; and if b =0 the frustum becomes a pyramid

2
and the formula yields _ﬂ_gﬁ . We may apply the TEST BY

pimeNsioN. In fact, the expression has as dimension the
cube of a length. Again, we may test the formula by
variation of the data. In fact, if any one of the positive
quantities a, b or 1 increases the value of the expression
increases.

Tests of this sort can be applied not only to the final
result but also to intermediate results. They are so useful
that it is worth while preparing for them; see VARIATION
OF THE PROBLEM, 4. In order to be able to use such tests,
we may find advantage in generalizing a “problem in
numbers” and changing it into a “problem in letters”;
see GENERALIZATION, 3.

3. Can you check the argument? Checking the argu-
ment step by step, we should avoid mere repetition. First,
mere repetition is apt to become boring, uninstructive, a
strain on the attention. Second, where we stumbled once,
there we are likely to stumble again if the circumstances
are the same as before. If we feel that it is necessary to 5O
again through the whole argument step by step, we should
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at least change the order of the steps, or their groupin
to introduce some variation. ®

4 It requires less exertion and is more interesting to
P:ck out the weakest point of the argument and examine
it first. A question very useful in picking out points of
the argument that are worth while examining is: b you
USE ALL THE DATA?

5. It is clear that our nonmathematical knowledge can-
not be based entirely on formal proofs. The more solid
part of our everyday knowledge is continually tested and
strengthened by our everyday experience. Tests by ob-
servation are more systematically conducted in the nat-
ural ‘sciences. Such tests take the form of careful
experiments and measurements, and are combined with
mathematical reasoning in the physical sciences. Can our
knowledge in mathematics be based on formal proofs
alone?

This is a philosophical question which we cannot de-
bate here. It is certain that your knowledge, or my knowl
edge, or your students’ knowledge in mathematics is not
based on formal proofs alone. If there is any solid knowl-
edg.e at all, it has a broad experimental basis, and this
basis is broadened by each problem whose result is
successfully tested.

. Can you derive the result differently? When the solu-
tion that we have finally obtained is long and involved,
we naturally suspect that there is some clearer and less
roundabout solution: Can you derive the resull differ-
ently? Can you see it at a glance? Yet even if we have
t-;ucceeded in finding a satisfactory solution we may stili be
interested in finding another solution. We desire to con-

~ vince ourselves of the validity of a theoretical result by

tw:vo dlf_ferent derivations as we desire to perceive a mate-
rial object through two different senses. Having found a
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proof, we wish to find another proof as we wish to touch
an object after having seen it.

Two proofs are better than one. “It is safe riding at
two anchors.”

1. Example. Find the area S of the lateral surface of
the frustum of a right circular cone, being given the
cadius of the lower base R, the radius of the upper base 1,
and the altitude A.

This problem can be solved by various procedures. For
instance, we may know the formula for the lateral surface
of a full cone. As the frustum is generated by cutting off
from a cone a smaller cone, so its lateral surface is the
difference of two full conical surfaces; it remains to ex-
press these in terms of R, 7, . Carrying through this idea,
we obtain finally the formula

§=aR+DNVE-P+F

Having found this result in some way Of other, after
longer calculation, we may desire a clearer and less
roundabout argument. Can you derive the result differ-
ently? Can you see it at a glance?

Desiring to see intuitively the whole result, we may
begin with trying to see the geometric meaning of its
parts. Thus, we may observe that

VR =12+
is the length of the slant height. (The slant height is one
of the nonparallel sides of the isosceles trapezoid that,
revolving about the line joining the midpoints of its

parallel sides, generates the frustum; see Fig. 12.) Again,
we may discover that

orR -+ 2ur
2

'.rr(R‘i'f) =

is the arithmetic mean of the perimeters of the two bases
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of the frustum. Looking at the same part of the formula,
we may be moved to write it also in the form

w(R+r)=21er’

that is the perimeter of the mid-section of the frustum
(T-Ne call here mid-section the intersection of the frustumi
with a plane which is parallel both to the lower base and
to the upper base of the frustum and bisects the altitude.)

LERERT BTN

a-.-'—.- - -

FIG. 12

Having found new interpretations of various parts, we

may see now the whole formula in a different light, We
may read it thus:

Area =~ Perimeter of mid-section X Slant height.
We may recall here the rule for the trapezoid:
Area = Middle-line X Altitude.

(The middle-line is parallel to the two parallel sides of

the trapezoid and bisects the altitude.} Seeing intuitively
. the analogy of both statements, that about the frustum
‘and that about the trapezoid, we see the whole result

about the frustum “almost at a glance.” That is, we feel
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that we are very near now to a short and direct proof of
the result found by a long calculation. . '

2. The foregoing example is typical. Not. entlrley satis-
fied with our derivation of the result, we wish to 1m'pr0ve
it, to change it. Therefore, we study the result, trying to
understand it better, to see some new aspect of' it. We
may succeed first in observing a new interpretation ofka
certain small part of the result. Then, we may -be lucky
enough to discover some new mode of conceiving some

r part.
ml]l*:exa?nining the various parts, one after the oth'e;, alng
trying various ways of consid(.ermg :chem, we may ;- €
finally to see the whole result in a different light, an (f)ur
new conception of the result may sgggest a new prooh.

1t may be confessed that all th{s is more _hkely to hap-
pen to an experienced mathemathan dealing W}th som;
advanced problem than to a beginner s.tr'ugghng wit
some elementary problem. The mathematician who haaj. a
great deal of knowledge is more exposed than the begmd:
ner to the danger of mobilizing too much knowledge an
framing an unnecessarily involved argume.nF. Bl_’lt, as a
compensation, the experienced mathematlf:lan }115 in a
better position than the beginner to appreciate tae re1g—

terpretation of a small part of the result and to _proce(; L
accumulating such small advantages, (o recasting ultl-

the whole resuit.
malt‘zlzertheless, jt can happen even in very ele1lrnenta.ry
classes that the students present an unnecessarily com-
plicated solution. Then, the teacher should show them,
at least once or twice, not only how to solve the pm'ble:?
more shortly but also how to find, in the result itseil,
indications of a shorter solution.
Gee 2ls0 REDUCTIO AD ABSURDUM AND INDIRECT PROOF,

Can you use the resuli? To find the solution of a prol?-
lem by our own means is a discovery. 1f the problem is

Can You Use the Result? by

not difficult, the discovery is not so momentous, but it is
a discovery nevertheless. Having made some discovery,
however modest, we shounld not fail to inquire whether
there is something more behind it, we should not miss the
possibilities opened up by the new result, we should try
to use again the procedure used. Exploit your success!
Can you use the result, or the method, for some other
problem?

1. We can easily imagine new problems if we are some-
what familiar with the principal means of varying a
problem, as GENERALIZATION, SPECIALIZATION, ANALOGY,
DECOMPOSING AND RECOMBINING. We start from a proposed
problem, we derive from it others by the means we just
mentioned, from the problems we obtained we derive
still others, and so on. The process is unlimited in theory
but, in practice, we seldom carry it very far, because the
problems that we obtain so are apt to be inaccessible.

On the other hand we can construct new problems
which we can easily solve using the solution of a problem
previously solved; but these easy new problems are apt
to be uninteresting.

To find a new problem which is both interesting and
accessible, is not so easy; we need experience, taste, and
good luck. Yet we should not fail to look around for
more good problems when we have succeeded in solving
one. Good problems and mushrooms of certain kinds
have something in common; they grow in clusters. Hav-
ing found one, you should look around; there is a goad
chance that there are some more guite near.

2. We are going to illustrate some of the foregoing
points by the same example that we discussed in sections
8, 10, 12, 14, 15. Thus we start from the following
problem:

Given the three dimensions (length, breadth, and
height) of a rectangular parallelepiped, find the diagonal.

If we know the solution of this problem, we can easily
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solve any of the following problems (of which the first
two were almost stated in section 14).

Given the three dimensions of a rectangular parallele-
piped, find the radius of the circumscribed sPhere.

The base of a pyramid is a rectangle of wthlch .the cen-
ter is the foot of the aititude of the pyr?mld. Given the
altitude of the pyramid and the sides of its base, find the
lateral edges.

Given the rectangular coordinates (:cl', Yis 21), (%2
¥4, Z5) of two points in space, find the distance of these
points. . 1

We solve these problems easily because they are scarcely
different from the original problem whose solution we
know. In each case, we add some new notion to our orig-
inal problem, as circumscribed sphere, py-ramld, rectan-
gular coordinates. These notions are easily added and
easily eliminated, and, having got rid of them, we fall
back upon our original problem. o N

The foregoing problems have a certain interest be-
cause the notions that we introduced into the original
problem are interesting, The last problem, r:hat ab?u-t the
distance of two points given by their coordinates, is even

an important problem because rectangular coordinates
i rtant.
aIeg.m;-IP;re is another problem which we can easily s?lve
if we know the solution of our original problem: Given
the length, the breadth, and t;}? diagonal of a rectangu-
arallelepiped, find the height. )
larlﬁ fact, tlI:ep:cgution of our original problem consists
essentially in establishing a relation among ?om quanti-
ties, the three dimensions of the pmllelgg:lped anfi its
diagonal. If any three of these four quantities are given,
we can calculate the fourth from the relation. Thus, we
the new problem.
car‘:;zlrlzve here E pattern to derive easily solvable new
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problems from a problem we have solved: we regard the
original unknown as given and one of the original data
as unknown. The relation connecting the unknown and
the data is the same in both problems, the old and the
new. Having found this relation in one, we can use it
also in the other.

This pattern of deriving new problems by interchang-
ing the roles is very different from the pattern followed
under 2.

4. Let us now derive some new problems by other
means.

A natural generalization of our original problem is the
following: Find the diagonal of a parallelepiped, being
given the three edges issued from an end-point of the
diagonal, and the three angles between these three
edges.

By specialization we obtain the following problem:
Find the diagonal of a cube with given edge.

We may be led to an inexhaustible variety of problems
by analogy. Here are a few derived from those considered
under 2: Find the diagonal of a regular octahedron with
given edge. Find the radius of the circumscribed sphere
of a regular tetrahedron with given edge. Given the geo-
graphical coordinates, latitude and longitude, of two
points on the earth’s surface (which we regard as a
sphere) find their spherical distance.

All these problems are interesting but only the one

obtained by specialization can be solved immediately on

the basis of the solution of the original problem.

5. We may derive new problems from a proposed one
by considering certain of its elements as variable.

A special case of a problem mentioned under 2 is to
find the radius of a sphere circumscribed about a cube
whose edge is given. Let us regard the cube, and the com-
mon center of cube and sphere as fixed, but let us vary



68 Carrying Out

the radius of the sphere. If this radius is small, the sphere
is contained in the cube. As the radius increases, the
sphere expands (as a rubber balloon in the process of
being inflated) . At a certain moment, the sphf:re touches
the faces of the cube; a little later, its edges; still later the
sphere passes through the vertices. Which values does the
radius assume at these three critical moments? .

6. The mathematical experience of the student is 1n-
complete if he never had an opportunity to solve a prob-
lem invented by himself. The teacher may show the d_er-
ivation of new problems from one just solved and, doing
so, provoke the curiosity of the students. The teacher
may also leave some part of the invention to the students.
For instance, he may tell about the expanding sphere we
just discussed (under 5) and ask: “What would you try
to calculate? Which value of the radius is particularly
interesting?”

Carrying out. To conceive a plan -ar}d to carry it
through are two different things. This is true also of
mathematical problems in a certain sense; b.et-wee'n carry-
ing out the plan of the solution, and conceiving it, there
are certain differences in the character of the wr.ark.

1. We may use provisional and merely plausible argu-
ments when devising the final and rigorous argument as
we use scaffolding to support a bridge during construc-
tion. When, however, the work is sufficiently advanced
we take off the scaffolding, and the bridge should be: abloe
to stand by itself. In the same way, when t..he solution is
sufficiently advanced, we brush aside all kinds of pravi-
sional and merely plausible arguments, and the result
should be supported by rigorous argument alone.

Devising the plan of the solution, we shonfld not be too
afraid of merely plausible, heuristic reasoning. Anything
is right that leads to the right idea. But we have to
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change this standpoint when we start carrying out the
plan and then we should accept only conclusive, strict
arguments, Carrying out your plan of the sclution check
each step. Can you see clearly that the step is correct?

The more painstakingly we check our steps when carry-
ing out the plan, the more freely we may use heuristic
reasoning when devising it.

2. We should give some consideration to the order in
which we work out the details of our plan, especially if
our problem is complex. We should not omit any detail,
we should understand the relation of the detail before
us to the whole problem, we should not lose sight of the
connection of the major steps. Therefore, we should
proceed in proper order.

In particular, it is not reasonable to check minor de-
tails before we have good reasons to believe that the

~ major steps of the argument are sound. If there is a break

in the main line of the argument, checking this or that
secondary detail would be useless anyhow.

The order in which we work out the details of the

- argument may be very different from the order in which

we invented them; and the order in which we write down
the details in a definitive exposition may be still different.
Euclid’s Elements present the details of the argument in
a rigid systematic order which was often imitated and

. often criticized.

3. In Euclid's exposition all arguments proceed in the

- same direction: from the data toward the unknown in
- “problems to find,” and from the hypothesis toward the

conclusion in “problems to prove.” Any new element,

~ poing, line, etc, has to be correctly derived from the data

or from elements correctly derived in foregoing steps.

_ Any new assertion has to be correctly proved from the
- hypothesis or from assertions correctly proved in fore-
. Boing steps. FEach new element, each new assertion is
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examined when it is encountered first, and so it has to be
examined just once; we may concentrate all our attention
upen the present step, we need not look behind us, of
look ahead. The very last new element whose derivation
we have to check, is the unknowsn. The very last assertion
whose proof we have to examine, is the conclusion. If
each step is correct, also the last one, the whole argument
is correct.

The Euclidean way of exposition can be highly recom-
mended, without reservation, if the purpose is to examine
the argument in detail. Especially, if it is our own argu-
ment, and it is long and complicated, and we have not
only found it but have also surveyed it on large lines so
that nothing is left but to examine each particular point
in itself, then nothing is better than to write out the
whole argument in the Enclidean way.

The Euclidean way of exposition, however, cannot be
recommended without reservation if the purpose is to
convey an argument to 2 reader or to a listener who
never heard of it before. The Euclidean exposition is ex-
cellent to show each particular point but not so good to
show the main line of the argument. THE INTELLIGENT
READER can easily see that each step is correct but has
great difficulty in perceiving the source, the purpose, the
connection of the whole argument. The reason for this
difficulty is that the Euclidean exposition fairly often
proceeds in an order exactly opposite to the natural
order of invention. (Euclid’s exposition follows rigidly
the order of “synthesis”; see PAPPUS, especially comments
3 4 5)

4 Let us sum up. Euclid’s manner of exposition, pro-
gressing relentlessly from the data to the unknown and
from the hypothesis to the conclusion, is perfect for
checking the argument in detail but far from being per-
fect for making understandable the main line of the

argument.

Carrying Out 1

IF is highly desirable that the students should examine
f,helr. own arguments in the Euclidean manner, proceed-
g from the data to the unknown, and checking each
step aithough nothing of this kind should be too figidl
enforced, It is not so desirable that the teacher shou]g
present many proofs in the pure Euclidean manner, al-
though the Euclidean presentation may be very us:eful
after a discussion in which, as is recommended by the
present-book, the students guided by the teacher discover
t%le main idea of the solution as independently as pos-
sible. Also desirable seems to be the manner adopted b
some 'textbooks in which an intuitive sketch of the maig
idea 1s presented first and the details in the Euclidean
order ol exposition afterwards.

5. Wishing to satisfy himself that his proposition is
true, the conscientious mathematician tries to see it in.
tu:tnr.ely and to give a formal proof. Can you see clearly
that i is correct? Can you prove that it is correct? The
conscientious mathematician acts in this respect like the
lady who is a conscientious shopper. Wishing to satisfy
hersell of the quality of a {abric, she wants to see it and
to touch it. Intuitive insight and formal proof are two
dlfferen‘t ways of perceiving the truth, comparable to the
perception of a material object through two different
senses, sight and touch.

Intuitive insight may rush far ahead of formal proof.
Any intelligent student, without any systematic knowl-
edge of solid geometry. can see as soon as he has clearly
understood the terms that two straight lines parallel to
the same straight linc are parallel to each other (the
three lines may or may not be in the same plane). Yet
the proof of this statement, as given in proposition g of
the 11 th book of Euclid's Elements, needs a long, careful
and ingenious preparation. , ,

Formal manipulation of logical rules and algebraic
formulas may get far ahead of intuition. Almost every-
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body can see at once tnat 3 straight lines, taken at ran-
dom, divide the plane into 7 parts (look at the only
finite part, the triangle included by the_ 3 lines).. Scarcely
anybody is able to see, even straining his attention to the
utmost, that r, planes, taken at random, divide s'pace into
26 parts. Yet it can be rigidly proved that the right num-
ber is actually 26, and the proof is not even long or
difficuit. -

Carrying out our plan, we check each step. Checking
our step, we may rely on intuitive insight or on formal
rules. Sometimes the intuition is ahead, sometimes t.he
formal reasoning. It is an interesting and useful exercise
to do it both ways. Can you see clearly that the step is
correct? Yes, 1 can see it clearly and distinctly. Intuition
is ahead: but could formal reasoning overtake it? Can
yott also PROVE that it is correct? - o

Trying to prove formally what Is seen m.tmtw‘ely‘and
to see intuitively what is proved formally is an invigor-
ating mental exercise. Unfortunately, in the classroom
there is not always enough time for it. The example,
discussed in sections 12 and 14, is typical in this respect.

Condition is a principal part of a “problem to find.”
See PROBLEMS TO FIND, PROBLEMS TO FROVE, 3. See also
TERMS, NEW AND OLD, 2. -

A condition is called redundant if it contains super-
fluous parts. It is called contradictory if its parts are
mutually opposed and inconsistent so that there 1s no
object satisfying the condition. -

Thus, if a condition is expressed by more linear equa-
tions than there are unknowns, it is either redundant or
contradictory; if the condition is e:':px"es?ed bY. fewer
equations than there are unknowns, 1t 1s m_sufﬁment to
determine the unknowns; if the condition is expre:?.se.d
by just as many equations as there are unknowns it 18
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usually just sufficient to determine the unknowns but
may be, in exceptional cases, contradictory or insufficient.

Contradictory. See CONDITION,

Carollary is a theorem which we find easily in examin-
ing another theorem just found. The word is of Latin
origin; a more literal translation would be “gratuity” or
LI "

tip.

Could you derive something wuseful from the daca?
We have before us an unsolved problem, an open ques-
tion. We have to find the connection between the data
and the unknown. We may represent our unsolved prob-
lem as open space between the data and the unknown,
as a gap across which we have to construct a bridge. We
can start constructing our bridge from either side, from
the unknown or from the data.

Look at the unknown! And try to think of a familiar
problem having the same or a similar unknown. This
suggests starting the work from the unknown.

Look at the datal Could you derive something useful
from the data? This sugpests starting the work from the
data.

It appears that starting the reasoning from the un-
known is usually preferable (see pappUs and woORKING
BACKWARDS). Yet the alternative start, from the data, also
has chances of success, must often be tried, and deserves
illustration.

Example. We are given three points 4, B, and €. Draw
a line through 4 which passes between B and C and is
at equal distances from B and C.

What are the data? Three points, 4, B, and C, are
given in position. We draw a figure, exhibiting the data
(Fig. 13).
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What is the unknown? A straight line.

What is the condition? The required line passes
through 4, and passes between B and C, at the same dis-
tance from each. We assemble the unknown and the data

C

FIG. 13

in a figure exhibiting the required relations (Fig. 14) .
Our figure, suggested by the definition of the distance .of
a point from a straight line, shows the right angles in-

volved by this definition.

FIG. 14

The figure, as it is plotted, is still “too :empty.” The
unknown straight line is still unsatisfactorily connected
with the data 4, B, and C. The figure needs some aux-
iliary line, some addition—but what? A fairly good stu-
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dent can get stranded here. There are, of course, various
things to try, but the best question to refloat him is:
Could you derive something useful from the data?

In fact, what are the data? The three points exhibited
in Fig. 13, nothing else. We have not yet used sufhiciently
the points B and C; we have to derive something useful
from them. But what can you do with just two points?
Join them by a straight line. So, we draw Fig. 15.

FIG. 15

If we superpose Fig. 14 and Fig. 15, the solution may
appear in a flash: There are two right triangles, they are
congruent, there is an all-important new point of inter-
section.

Could you restate the problem? Could you restate it

 still differently? These questions aim at suitable varia-

TION OF THE PROBLEM.
Go back to definitions. See DEFINITION.

Decomposing and recombining are important opera-
tions of the mind. .

You examine an object that touches your interest or
challenges your curiosity: a house you intend to rent, an
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important but cryptic telegram, any object whos? pur-
pose and origin puzzle you, or any proble.m you intend
to solve. You have an impression of the object as a whole
but this impression, possibly, is not definite enough. 'A
detail strikes you, and you focus your attention upon it.
Then, you concentrate upon another detail; .then, again,
upon another. Various combinations of details may pre-
sent themselves and after a while you again consider the
object as a whole but you see it now differently. Y.'ou de-
compose the whole into its parts, and you recombine the
parts into a more or less different whole, .

1. 1f you go into detail you may lose yourself in de-
tails. Too many or too minute particulars are a burden
on the mind. They may prevent you from giving syﬂi-
cient attention to the main point, or even from seeing
the main point at all. Think of the man who cannot see
the forest for the trees.

Of course, we do not wish to waste our time with un-
necessary detail and we should reserve our effort for the
essential. The difficulty is that we cannot say beforehand
which details will turn out ultimately as necessary and
which will not.

Therefore, let us, first of all, understand the problem
as a whole., Having understood the problem, we .shall be
in a better position to judge which particular points may
be the most essential. Having examined one or two
essential points we shall be in a better position to ju'dge
which further details might deserve closer examination.
Let us go into detail and decompose the problem gradu-
ally, but not further than we need to. _

Of course, the teacher cannot expect that all stude'nts
should act wisely in this respect. On the contrary, itisa
very foolish and bad habit with some students to stari
working at details before having understood the problem
as a whole.
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2. We are going to consider mathematical problems,
“problems to find.”

Having understood the problem as a whole, its aim, its
main point, we wish to go into detail. Where should we
start? In almost all cases, it is reasonable to begin with
the consideration of the principal parts of the problem
‘which are the unknown, the data, and the condition. In
almost all cases it is advisable to start the detailed ex-
amination of the problem with the questions: What s
the unknown? What are the data? Whal is the condition?

If we wish to examine further details, what should we
do? Fairly often, it is advisable to examine each datum
by itself, to separate the various parts of the condition,
and to examine each part by itself.

We may find it necessary, especially if our problem is
more difficult, to decompose the problem still further,
and to examine still more remote details. Thus, it may

'be necessary to go back to the definition of a certain term,

to introduce new elements involved by the definition,
“and to examine the elements so introduced.

§. After having decomposed the problem, we try to
recombine its elements in some new manner. Especially,
we may try to recombine the elements of the problem
into some new, more accessible problem which we could
possibly use as an auxiliary problem.

There are, of course, unlimited possibilities of recom.’

. bination. Difficult problems demand hidden, exceptional,
* original combinations, and the ingenuity of the problem-

“solver shows itself in the originality of the combination.

'_:.:'_{_".There are, however, certain usual and relatively simple
~sorts of combinations, sufficient for simpler problems,
“which we should know thoroughly and try first, even if

»We may be obliged eventually to resort to less obvious

“means.

There is a formal classification in which the most usual
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and useful combinations are neatly placed. In construc-
ting a new problem from the proposed problem, we may
(1) keep the unknown and change the rest (the data
and the condition); ot
{2) keep the data and change the rest (the unknown
and the condition); or
(3) change both the unknown and the data.
We are going to examine these cases. o .
[The cases (1) and (2) overlap. In fact, 1t 1s possible
to keep both the unknown and the data, andl fransform
the problem by changing the form of the condition alOl:l(E.
For instance, the two following problems, although visi-
bly equivalent, are not exactly the same: '
Construct an equilateral triangie, bem:g given a s.1d(?.
Construct an equiangular triangle, bemg given 2 51d‘e.
The difference of the two statements Wh-l.Ch is slight in
the present example may be momentous in other cases.
Such cases are even important in certain respects but it
would take up too much space to discuss them here.
Compare AUXILIARY PROBLEMS, 7. last rt?mark.} ]
4. Keeping the unknown and changing the data an
the condition in order to transform the proposed prob-
lem is often useful. The suggestion LOOK AT THE UN-
KNOWN aims at problems with the same unknown. W_e
may try to recollect a formerly_s'olved problem FJf [1’;115
kind: And try to think of a familiar problem having the
same or a similar unknown. Failing to remember s.uch a
problem we may try to invent one: Could you thu:k of
other data appropriate to determine the unknowni .
A new problem which is more closely rela'ted to ft f
proposed problem has a better chance of being use ;10
Therefore, keeping the unknown, we iry to keep als
some data and some part of the condition, and to change,
as little as feasible, only one or two data' and a: small pau:tt
of the condition. A good method is one In which we oml
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something without adding anything; we keep the un-
known, keep only a part of the condition, drop the other
part, but do not introduce any new clause or datum.
Examples and comments on this case follow under %, 8.

5. Keeping the data, we may try to introduce some use-
ful and more accessible new unknown. Such an unknown
must be obtained from the original data and we have
such an unknown in mind when we ask: couLb YOU DE-
RIVE SOMETHING USEFUL FROM THE DATA?

Let us observe that two things are here desirable. First,
the new unknown should be more accessible, that is,
more easily obtainable from the data than the original
unknown. Second, the new unknown should be useful,
that is, it should be, when found, capable of rendering
some definite service in the search of the original un-
known. In short, the new unknown should be a sort of
stepping stone. A stone in the middle of the creek is
ncarer t0 me than the other bank which I wish to arrive
at and, when the stone is reached, it helps me on toward
the other bank.

The new unknown should be both accessible and use-
ful but, in practice, we must often content ourselves with

~ less. If nothing better presents itself, it is not unreason-

able to derive something from the data that has some
chance of being useful; and it is also reasonable to try a

- new unknown which is closely connected with the orig-

inal one, even if it does not seem particularly accessible
from the outset.

For instance, if our problem is to find the diagonal of

.~ a parallelepiped (as in section 8) we may introduce the
: diagonal of a face as new unknown, We may do so either

PLELIEE RN

- because we know that if we have the diagonal of the face
- we can also obtain the diagonal of the solid (as in sec-
“tion 10); or we may do so because we see that the
. diagonal of the face is easy to obtain and we suspect that
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it might be useful in finding the diagonal of the solid.
(Compare pIp YOU USE ALL THE DATA? 1.}

If our problem is to construct a circle, we have to find
two things, its center and its radius; our problem has
two parts, we may say. In certain cases, one part is more
accessible than the other and therefore, in any case, we
may reasonably give a moment’s consideration to this
possibility: Could you solve a part of the problem? Ask-
ing this, we weigh the chances: Would it pay to concen-
trate just upon the center, or just upon the radius, and
to choose one or the other as our new unknown? Ques-
tions of this sort are very often useful. In more complex
or in more advanced problems, the decisive idea often
consists in carving out some more accessible but essential
part from the problem.

6. Changing both the unknown and the data we devi-
ate more from our original course than in the foregoing
cases. This, naturally, we do not like; we sense the dan-
ger of losing the original problem altogether. Yet we may
be compelled to such an extensive change if less radice:
changes have failed to produce something accessible and
useful, and we may be tempted to recede so far from our
original problem if the new problem has a good chance
of success. Could you change the unhknown, or the data,
or both if necessary, so thai the new unknown and the
new data are nearer to each other?

An interesting way of changing both the unknown and
the data is interchanging the unknown with one of the
data. (See CAN YOU USE THY RESULT? 8.)

y. Example. Construct a triangle, being given 2z side a,
the altitude h perpendicular to a, and the angle a Oppo-
site 1o 4.

What is the unknown? A triangle.

What a: 2 the data? Two lines, 2 and h, and an angle o

Now, if we are somewhat familiar with problems ot

%
f I3
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geometric construction, we try to reduce such a problem
to the construction of a point. We draw a line BC equal
to the given side a; then all that we have to find is the

vertex of the triangle A, opposite to g, see Fig. 16. We
have, 1n fact, a new problem.

FIG. 10

What is the unknown? The point 4.
What are the data? A line h, an angle a, and two points

- B and C given in position.

What is the condition? The perpendicular distance of

. the point 4 from the line BC should be 4 and /BAC

\ = -

In fact, we have transformed our problem, changing

. both the unknown and the data. The new unknown is a

point, the old unknown was a triangle. Some of the data

. are the same in both problems, the line A and the angle

a; but in the old problem we were given a2 length a and
now we are given two points, B and C, instead.
- The new problem is not difficult. The following sug-

- gestion brings us quite near to the solution.

Separate the various parts of the condition, The con-

_dition has two parts, one concerned with the datum 7,

the other with the datum o The unknown point is
required to be
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(1) at distance h from the line BC; and

(1) the vertex of an angle of given magnitude o,
whose sides pass through the given points B and C.

if we keep only one part of the condition and drop the
other part, the unknown point is not completely deter-
mined. There are many points satisfying part (I) of the
condition, namely all points of a parallel to the line BC
at the distance k from BC.2 This parallel is the locus of
the points satisfying part (I) of the condition. The locus
of the points satisfying part (11) is a certain circular arc
whose end-points are B and €. We can describe both loci;
theitr intersection is the point that we desired to con-
struct.

The procedure that we have just applied has a certain
interest; solving problems of geometric construction, we
can often follow successfully its pattern: Reduce the
problem to the construction of a point, and construct the
point as an intersection of two loci.

But a certain step of this procedure has a still more
general interest; solving “problems to find” of any kind,
we can follow its pattern: Keep only a part of the cond:-
tion, drop the other part. Doing so, we weaken the con-
dition of the proposed problem, we restrict less the
unkpown. How far is the unknown then determined,
how can it vary? By asking this, we set, in fact, 4 new
problem. If the unknown is a point in the plane (as 1t
was in our example) the solution of this new problem
consists in determining a locus described by the point.
If the unknown is a mathematical object of some other
kind (it was a square in section 18) we have to describe
properly and to characterize precisely a certain set of
objects. Even if the unknown is not a mathematical

2 Fhe plane is bisected by the line through B and €. We choose
one of the halfplanes to construct A in it, and so we may consider
just one parallel to BC; otherwise, we should consider two such
parallels,
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object (as in the next example, under 8) it may be useful
to consider, to characterize, to describe, or to list those
objects which satisfy a certain part of the condition im-
posed upon the unknown by the proposed problem.

8. Example. In a crossword puzzle that allows puns
and anagrams we find the following clue:

“Forward and backward part of a machine (5 letters).”

What is the unknown? A word.

What is the condition? The word has y letters. It has
something to do with some part of some machine. It
should be, of course, an English word, and not a too
unusual one, let us hope.

Is the condition sufficient to determine the unknown?
No. Or, rather, the condition may be sufficient but that
part of the condition which is clear by now is certainly
insufficient. There are too many words satisfying it, as
“lever,” or ''screw,”” or what not.

The condition is ambiguously expressed—on purpose,
of course. If nothing can be found that could be plausibly
described as a “forward part” of a machine and would be
a “backward part” too, we may suspect that forward and
backward reading might be meant. It may be a good idea
to examine this interpretation of the clue.

Separate the various parts of the condition. The con-
dition has two parts, one concerned with the meaning of
the word, the other with its spelling. The unknown word

3 required to be

(I) a short word meaning some part of some machine;
(1) a word with 5 letters which spetled backward

- give again a word meaning some part of some machine.

If we keep only one part of the condition and drop the
other part, the unknown is not completely determined.

' ':E'here are many words satisfying part (I) of the condi-
‘tion, we have a sort of locus. We may “describe” this
locus (I), “follow” it to its “intersection” with locus
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(I1). The natural procedure is to concentrate upon part
(1) of the condition, to recollect words having the pre-
scribed meaning and, when we have succeeded in recol-
lecting some such word, 1o examine whether it has or has
not the prescribed length and can or cannot be read
backward. We may have to recollect several words before
we run inte the right one: lever, screw, wheel, shaft,
hinge, motor.

Of course, “rotor”!

9. Under g, we classified the possibilities of obtaining
a new “problem to find” by recombining certain ele-
ments of a proposed “problem to find.” If we do not in-
troduce just one new problem, but two or moré new
problems, there are more possibilities which we have to
mention but do not attempt to classify.

Still other possibilities may arise. Especially, the soln-
tion of a “problem to find” may depend on the solution
of a “problem to prove.” We just mention this important
possibility; considerations of space prevent us from dis-
cussing it.

10. Only few and short remarks can be added concern-
ing “problems to prove”; they are analogous to the
foregoing more extensive comments on “problems to
find” (2tog). :

Having understood such a problem as a whole, we
should, in general, examine its principal parts. The
principal parts are the hypothesis and the conclusion
of the theorem that we are required to prove or 1o
disprove. We should understand these parts thoroughly:
What is the hypothesis? What is the conclusion? I
there is need to get down to more particular points,
we may separate the various parts of the hypothesis,
and consider each part by itself. Then we may proceed
to other details, decomposing the problem further and
further.
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After having decomposed the problem, we may try to
recombine its elements in some new manner. Especially,
we may try to recombine the elements into another
theorem. In this respect, there are three possibilities.

{(r) We keep the conclusion and change the hypoth-
esis. We first try to recollect such a theorem: Look at the
conclusion! And iry to think of a familiar theorem hav-
ing the same or e similar conclusion. If we do not
succeed in recollecting such a theorem we try to invent
one: Could you think of another hypothesis from which
you could easily derive the conclusion? We may change
the hypothesis by omitting something without adding
anything: Keep only a part of the hypothesis, drop the
other part; is the conclusion still valid?

(2) We keep the hypothesis and change the conclu-
sion: Could you derive something useful from the hy-
pothesis?

(3) We change both the hypothesis and the conclu-
sion. We may be more inclined to change both if we
have had no success in changing just one. Could you
change the hypothesis, or the conclusion, or both if
necessary, so that the new hypothesis and the new con-
clusion are nearer to each other?

We do not attempt to classify here the various pos-

- sibilities which arise when, in order to solve the proposed

“problem to prove,” we introduce two or more new
“problems to prove,” or when we link it up with an
appropriate “problem to find."”

Definition of a term is a statement of its meaning in
other terms which are supposed to be well known.

1. Technical terms in mathematics are of two kinds.
Some are accepted as primitive terms and are not defined.
Others are considered as derived terms and are defined
in due form; that is, their meaning is stated in primitive
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terms and in formerly defined derived terms. Thus, we
do not give a formal definition of such primitive notions
as point, straight line, and plane. Yet we give formal
definitions of such notions as “bisector of an angle” or
“circle” or “parabola.”

The definition of the last quoted term may be stated
as follows. We call parabola the locus of points which are
at equal distance from a fixed point and a fixed straight
line. The fixed point is called the focus of the parabola,
the fixed line its directrix. Tt is understood that all ele-
ments considered are in a fixed plane, and that the fixed
point (the focus) is not on the fixed line (the directrix).

The reader is not supposed to know the meaning of
the terms defined: parabola, focus of the parabola,
directrix of the parabola. But he is supposed to know the
meaning of all the other terms as point, straight line,
plane, distance of a point from another point, fixed,
locus, etc.

2. Definitions in dictionaries are not very much differ-
ent from mathematical definitions in the outward form
but they are written in a different spirit.

The writer of a dictionary is concerned with the cur-
rent meaning of the words. He accepts, of course, the
current meaning and states it as neatly as he can in form
of a definition.

The mathematician is not concerned with the current
meaning of his technical terms, at least not primarily
concerned with that. What “circle” or “parabela” or
other technical terms of this kind may or may not denote
in ordinary speech matters little to him. The mathemati-
cal definition creates the mathematical meaning.

3$In this respect, ideas have changed since the time of Euclid and
his Greek followers who defined the point, the straight line, and the
plane. Their adefinitions” however are scarcely formal defnitions,

rather intuitive illustrations of a sort. THustrations, of course, axe
allowed, and even very desirable in teaching.

Definition 8

8 Example. Construct the point of intersection of a
given straight line and a parabola of which the focus and
the directrix are given.

Our approach to any problem must depend on the
state of our knowledge. Our approach to the present
problem depends mainly on the extent of our acquaint-
ance with the properties of the parabola. If we know
much about the parabola we try to make use of our
knowledge and to extract something helpful from it: Do
you know a theorem that could be useful? Do you know
a related problem? 1f we know little about parabola,
focus, and directrix, these terms are rather embarrassing
and we naturally wish to get rid of them. How can we
get rid of them? Let us listen to the dialogue of the
teacher and the student discussing the proposed problem.
They have chosen already a suitable notation: P for any

- of the unknown points of intersection, F for the focus, 4

for the directrix, ¢ for the siraight line intersecting the
parabola.

“And what is the unknown?”

“The point P.”

“What are the data?”

“The straight lines ¢ and d, and the point F.”

“What is the condition?”

“P is a point of intersection of the straight line ¢ and
of the parabola whose directrix is d and focus F.”

“Correct. You had little opportunity, I know, to study
the parabola but you can say, I think, what a parabola

4 sy

is.

“The parabola is the locus of points equidistant from
the focus and the directrix.”

“Correct. You remember the definition correctly. That
is right, but we must also use it; go back to definitions.

By virtue of the definition of the parabola, what can you
say about your point P?”’
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“P is on the parabola. Therefore, P is equidistant from

d and F.”
“Good! Draw a figure.”

o
o

FIG. 17

The student introduces into Fig. 17 the lines PF and
PQ, this latter being the perpendicular to d from P.

“Now, could you restate the problem?”

:‘C.ould you restate the condition of the problem, using
the lines you have just introduced?” ;

“P is a point on the line ¢ such that PF = PQ. §

“Good. But please, say it in words: What is PQ?

“The perpendicular distance of P from d.”

“Good. Could you restate the problem now? But please,
state it neatly, in a round sentence.” .

“Construct a point P on the given straight line ¢ at
equal distances from the given point F and the given
straight line 4.” -

“Observe the progress from the original statement to
your restatement. The original statement of the problem
was full of unfamiliar technical terms, parabola, focus,
directrix; it sounded just a little pompous and inflated.
And now, nothing remains of those unfamiliar technical
terms; you have deflated the problem. Well donel”

Defintiion 8g

4. Elimination of technical terms is the result of the
work in the foregoing example. We started from a state-
ment of the problem containing certain technical terms
(parabola, focus, directrix) and we arrived finally at a
restatement free of those terms.

In order to eliminate a technical term we must know

~ its definition; but it is not enough to know the defini-

tion, we must use it, In the foregoing example, it was not
enough to remember the definition of the parabola. The
decisive step was to introduce into the figure the lines
PF and PQ whase equality was granted by the definition
of the parabola. This is the typical procedure. We intro-
duce suitable elements into the conception of the prob-
lem. On the basis of the definition, we establish relations
between the elements we introduced. If these relations
express completely the meaning, we have used the defini-
tion. Having used its definition, we have eliminated the
technical term.

The procedure just described may be called going back
to definttions.

By going back to the definition of a technical term, we
get rid of the term but introduce new elements and new
relations instead. The resulting change in our conception
of the problem may be important. At any rate, some
Testaternent, some VARIATION OF THE PROBLEM 15 bound
to result.

5. Definitions and known theorems. If we know the

" name “parabola” and have some vague idea of the shape
-~ of the curve but do not know anything else about it, our

knowledge is obviously insufficient to solve the problem

proposed as example, or any other serious geometric
7 problem about the parabela. What kind of knowledge is

needed for such a purpose?
The science of geometry may be considered as con-

% sisting of axioms, definitions, and theorems. The parab-
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ola is not mentioned in the axioms which deal only
with such primitive terms as point, straight line, and so
on. Any geometric argumentation concerned with the
parabola, the solution of any problem involving it, must
use either its definition or theorems about it. To solve
such a problem, we must know, at least, the definition
but it is better to know some theorems too.

What we said about the parabola is true, of course, of
any derived notion. As we start solving a problem that
involves such a notion, we cannot know yet what will be
preferable to use, the definition of the notion, or some
theorem about it; but it is certain that we have to use
one or the other.

There are cases, however, in which we have no choice.
If we know just the definition of the notion, and nothing
else, then we are obliged to use the definition. If we do
not know much more than the definition, our best chance
may be to go back to the definition. But if we know many
theorems about the notion, and have much experience
in its use, there is some chance that we may get hold of
a suitable theorem involving it.

6. Several definitions. The sphere is usually defined as
the locus of points at a given distance from a given point.
(The points are now in space, not restricted to a plane.)
Yet the sphere could also be defined as the surface de-
scribed by a circle revolving about a diameter. Still other
definitions of the sphere are known, and many others
possible.

When we have to solve a proposed problem involving
some derived notion, as “sphere” or “parabola,” and we
wish to go back ta its definition, we may have a choice
among various definitions. Much may depend in such a
case on choosing the definition that fits the case.

To find the area of the surface of the sphere was, at the
time Archimedes solved it, a great and d_ifﬁcult problem.

Definition gt

Archimedes had the choice between the definitions of the
sphere we just quoted. He preferred to conceive the
sphere as the surface generated by a circle revolving
‘about a fixed diameter. He inscribes in the circle a regu-
lar polygon, with an even number of sides, of which the
fixed diameter joins opposite vertices. The regular poly-
gon approximates the circle and, revolving with the
circle, generates a convex surface composed of two cones
with vertices at the extremities of the fixed diameter and
of several frustums of cones in between. This composite
surface approximates the sphere and is used by Archi-
medes in computing the area of the surface of the sphere.
If we conceive the sphere as the locus of points equally
distant from the center, no such simple approximation

. to its surface is suggested.

7. Going back to definitions is important in inventing
an argument but it is also important in checking it.

Somebody presents an alleged new solution of Archi-
medes’ problem of finding the area of the surface of the
sphere. If he has only a vague idea of the sphere, his
solution will not be any good. He may have a clear idea
of the sphere but if he fails to use this idea in his argu-

- ment I cannot know that he had any idea at all, and his

argument is no good. Therefore, listening to the argu-
ment, I am waiting for the moment when he is going to

- say something substantial about the sphere, to use its

definition or some theorem about it. If such a moment
never comes, the solution is no good.

We should check not only the arguments of others but,
of course, also our own arguments, in the same way.
Have you taken into account all essential notions in-
volved in the problem? How did you use this notion?

~ Did you use its meaning, its definition? Did you use

essential facts, known theorems about it?
That going back to definitions is important in examin-
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ing the validity of an argument was emphasized by Pascal
who stated the rule: “Substituer mentalement les défini-
tions 4 la place des définis.” The meaning is: “Substitute
mentally the defining facts for the defined terms.” That
going back to definitions is also important in devising
an argument was emphasized by Hadamard.

8. Going back to definitions is an important operation
of the mind. If we wish to understand why the defini-
tions of words are so important, we should realize first that
words are important. We can hardly use our mind without
using words, or signs, or symbols of some sort. Thus, words
and signs have power. Primitive peoples believe that
words and symbols have magic power. We may under-
stand such belief but we should not share it. We should
know that the power of a word does not reside in its
sound, in the “vocis flatus,” in the “hot air” produced
by the speaker, but in the ideas of which the word re-
minds us and, ultimately, in the facts on which the ideas
are based.

Therefore, it is a sound tendency to seek meaning and
facts behind the words. Going back to definitions, the
mathematician seeks to get hold of the actual relations
of mathematical objects behind the technical terms, as
the physicist seeks definite experiments behind his tech-
nical terms, and the common man with some common
sense wants to get down to hard facts and not to be
fooled by mere words,

Drescartes, René (1596-1650) , great mathematician and
philosopher, planned to give a universal method to solve
problems but he left unfinished his Rules for the Direc-
tion of the Mind. The fragments of this treatise, found
in his manuscripts and printed after his death, contain
more—and more interesting—materials concerning the
solution of problems than his better known work Dis-
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cours de la Méthode although the “Discours” was very
likely written after the “Rules.” The following lines of
Descartes seem to describe the origin of the “Rules”: “As
a young man, when I heard about ingenious inventions,
I tried to invent them by myself, even without reading
the author. In doing so, I perceived, by degrees, that 1
was making use of certain rules.”

Determination, hope, success. 1t would be a mistake to
think that solving problems is a purely “intellectual
affair”; determination and emotions play an important
role. Lukewarm determination and sleepy consent to do
a little something may be enough for a routine problem
in the classroom. But, to solve a serious scientific prob-
lem, will power is needed that can outlast years of toil
and bitter disappointments.

1. Determination fluctuates with hope and hopeless-
ness, with satisfaction and disappointment. It is easy to
keep on going when we think that the solution is just
around the corner; but it is hard to persevere when we
do not see any way out of the difficulty, We are elated
when our forecast comes true. We are depressed when
the way we have followed with some confidence is sud-
denly blocked, and our determination wavers.

“Il n'est point besoin espérer pour entreprendre ni
réussir pour persévérer.” “You can undertake without
hope and persevere without success.” Thus may speak
an inflexible will, or honor and duty, or a nobleman with
a noble cawse. This sort of determination, however,
would not do for the scientist, who should have some hope
to start with, and some success to go on. In scientific
work, it is necessary to apportion wisely determination
to outlook. You do not take up a problem, unless it has

_some interest; you settle down to work seriously if the

problem seems instructive; you throw in your whole
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personality if there is a great promise. If your purpose is
set, you stick to it, but you do not make it unnecessarily
difficult for yourself. You do not despise little successes,
on the contrary, vou seek them: If you cannol solve
the proposed problem try to solve first some related
problem.

2. When a student makes really silly blunders or is
exasperatingly slow, the trouble is almost always the
same; he has no desire at all to solve the problem, even
no desire to understand it properly, and so he has not
understood it. Therefore, a teacher wishing seriously to
help the student should, first of all, stir up his curiosity,
give him scme desire to solve the problem. The teacher
should also allow some time to the student to make up
his mind, to settle down to his task.

Teaching to solve problems is education of the will.
Solving problems which are not toa easy for him, the
student learns to persevere through umsuccess, to appre-
ciate small advances, to wait for the essential idea, to
concentrate with all his might when it appears. I the
student had no opportunity in school to familiarize
himself with the varying emotions of the struggle for the
solution his mathematical education failed in the most
vital point.

Diagnosis is used here as a technical term in education
meaning “closer characterization of the student’s work.”
A grade characterizes the student’s work but somewhat
crudely. The teacher, wishing to improve the student’s
work, needs a closer characterization of good and bad
points as the physician, wishing to improve the patient’s
health, needs a diagnosis.

We are here particularly concerned with the student’s
efficiency in solving problems. How can we characterize
it> We may derive some profit from the distinction of the
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four phases of the solution. In fact, the behavior of the
students in the various phases is quite characteristic.

Incomplete understanding of the problem, owing to
lack of concentration, is perhaps the most widespread
deficiency in solving problems. With respect to devising
a plan and obtaining a general idea of the solution two
opposite faults are frequent. Some students rush into
calculations and constructions without any plan or gen-
eral idea; others wait clumsily for some idea to come and
cannot do anything that would accelerate its coming. In
carrying out the plan, the most frequent fault is careless-
ness, lack of patience in checking each step. Failure to
check the result at all is very frequent; the student is
glad to get an answer, throws down his pencil, and is not
shocked by the most unlikely results.

The teacher, having made a careful diagnosis of a fault
of this kind, has some chance to cure it by insisting on
certain questions of the list.

Did you use all the datap Owing to the progressive mo-
bilization of our knowledge, there will be much more in
our conception of the problem at the end than was in it
at the outsct (PROGRESS AND ACHIEVEMENT, 1). But how is
it now? Have we got what we need? Is our conception
adequate? Did you use all the data? Did you use the
whole condition? The corresponding question concerning
“problems to prove” is: Did you use the whole hy-
pothesis?

1. For an illustration, let us go back to the “parallele-
piped problem” stated in section 8 (and followed up in
sections 10, 12, 14, 15). It may happen that a student
runs into the idea of calculating the diagonal of a face,
4/ aZ + b%, but then he gets stuck. The teacher may help
him by asking: Did you use all the data? The student
can scarcely fail to observe that the expression /a2 + 52
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does not contain the third datum c. Therefore, he should
try to bring ¢ into play. Thus, he has a good chance to
observe the decisive right triangle whose legs are
A/ a%F b2 and ¢, and whose hypotenuse is the desired
diagonal of the parallelepiped. (For another illustration
see AUXILIARY ELEMENTS, 3.) .

The questions we discuss here are very important.
Their use in constructing the solution is clearly shown
by the foregoing example. They may help us to find the
weak spot in our conception of the problem. They may
point out a missing element. When we know that a cer-
tain element is still missing, we naturally try to bring it
into play. Thus, we have a clue, we have a definite line
of inquiry to follow, and have 2 good chance to meet
with the decisive idea. : .

2. The questions we discussed are helpful not or.:ly in
constructing an argument but also in checking it. In
order to be more concrete, let us assume that we have. to
check the proof of a theorem whose hypothesis consists
of three parts, all three essential to the truth of the
theorem. That is, if we discard any part of the hypothe-
sis, the theorem ceases to be true. Therefore, if the proof
neglects to use any part of the hypothesis, the progf mus*
be wrong. Does the proof use the whole hypotheszs?.Does
it use the first part of the hypothesis? Where does 1t use
the first part of the hypothesis? Where does it use the
second part? Where the third? Answering to all these
questions we check the proof. . .

This sort of checking is effective, Instructive, and al-
most necessary for thorough understanding if the argu-
ment is long and heavy—as THE INTELLIGENT READER
should know. - N

3. The questions we discussed aim at examining ine
completeness of our conception of the protolem. Qur con-
ception is certainly incomplete if we fail to take into
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account any essential datum or condition or hypothesis.
But it is also incomplete if we fail to realize the meaning
of some essential term. Therefore, in order to examine
our conception, we should also ask: Have you taken into
account all essential notions invelved in the problem?
See DEFINITION, 7.

4. The foregoing remarks, however, are subject to cau-
tion and certain limitations. In fact, their straightfor-
ward application is restricted to problems which are
“perfectly stated” and “reasonable.”

A perfectly stated and reasonable “problem to find”
must have all necessary data and not a single superfluous
datum; also its condition must be just sufficient, neither
contradictory nor redundant. In solving such a problem,
we have to use, of course, all the data and the whole
condition,

The object of a “problem to prove” is a mathematical
theorem. If the problem is perfectly stated and reason-
able, each clause in the hypothesis of the theorem must
be essential to the conclusion. In proving such a theorem
we have to use, of course, each clause of the hypothesis,

Mathematical problems proposed in traditional text-
books are supposed to be perfectly stated and reasonable.
We should however not rely too much on this; when
there is the slightest doubt, we should ask: 15 1T POSSIBLE
TO SATISFY THE CONDITION? Trying to answer this ques-
tion, or a similar one, we may convince ourselves, at least
to a certain exteat, that our problem is as good as it is
supposed to be.

The question stated in the title of the present article
and allied questions may and should be asked without
modification only when we know that the problem before
us is reasonable and perfectly stated or when, at least,
we have no reason to susnect the contrary.

5. There are some nonmathematical problems which
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may be, in a certain sense, “perfectly stated.” For in-
stance, good chess problems are supposed to have but
one solution and no superfluous piece on the chess-
board, etc.

PRACTICAL PROBLEMS however are usually far frqm
being perfectly stated and require a thorough reccm.md—
eration of the questions discussed in the present article.

Do you know a related problem? We can scarcely
imaginle a problem absolutely new, unlike and unrelated
to any formerly solved problem; but, if such a problfam
coulcf exist, it would be insoluble. In fact, when solving
a problem, we always profit from previously solved pl’(ﬂ?-
lems, using their result, or their method, or the experi-
ence we acquired solving them. And, of' course, the
problems from which we profit must be in some way
related to our present problem. Hence the question: Do
you know a related problem? . .

There is usually no difficulty at all in recalling for-
merly solved problems which are more or less related to
our present one, On the contrary, we may limd too many
such problems and there may be difficulty in choosing a
useful one. We have to look around for closely related
problems; we LOOK AT THE UNKNOWN, O W€ look for a
formerly solved problem which is linked to our present
one by GENERALIZATION, SPECIALIZATION, OF ANALOGY-

The question we discuss bere aims at the mobilization
of our formerly acquired knowledge (PROGRESS AND
ACHIEVEMENT, 1}. An essential part of our mathematical
knowledge is stored in the form of formerly proved
theorems. Hence the question: Do you Anow 2 tfreorem
that could be wseful? This question may be partlcglarly
suitable when our problem is a “problem to prove, that
is. when we have to prove or disprove a proposed
theorem.
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Draw a figure; see Ficures, Introduce suitable nota-
tion; see NOTATION,

Examine your guess. Your guess may be right, but it is
foolish to accept a vivid guess as a proven truth—as
primitive people often do. Your guess may be wrong. But

* it is also foolish to disregard a vivid guess altogether—as

pedantic people sometimes do. Guesses of a certain kind
deserve to be examined and taken seriously: those which
occur to us after we have attentively considered and
really understood a problem in which we are genuinely
interested. Such guesses usually contain at least a frag-
ment of the truth although, of course, they very seldom
show the whole truth, Yet there is a2 chance to extract the
whole truth if we examine such a guess appropriately.

Many a guess has turned out to be wrong but never-
theless useful in leading to a better one.

No idea is really bad, unless we are uncritical. What is
really bad is to have no idea at all.

1. Dor’t. Here is a typical story about Mr. John Jones.
Mr. Jones works in an office, He had hoped for a little
raise but his hope, as hopes often are, was disappointed.
The salaries of some of his colleagues were raised but not
his. Mr. Jones could not take it calmly. He worried and
worried and finally suspected that Director Brown was
responsible for his failure in getting 2 raise.

We cannot blame Mr. Jones for having conceived such
a suspicion. There were indeed some signs pointing to
Director Brown. The real mistake was that, after having
conceived that suspicion, Mr. Jones became blind to all
signs pointing in the opposite direction. He worried him-
self into firmly believing that Director Brown was his
personal enemy and behaved so stupidly that he almost
succeeded in making a real enemy of the director.

The trouble with Mr. John Jones is that he behaves
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like most of us. He never changes his major opinions. He
changes his minor opinions not infrequent'ly. and qu-ite
suddenly; but he never doubts any of his opinions, major
or minor, as long as he has them. He never doubts them,
or questions them, or examines them cr?tically—he would
especially hate critical examination, if he understood
what that meant. ‘

Let us concede that Mr. John Jones is right to a certain
extent. He is a busy man; he has his duties at the ofﬁce
and at home. He has little time for doubt or examina-
tion. At best, he could examine only a few of his con-
victions and why should he doubt one if he has no tume
to examine that doubt?

Still, don’t do as Mr. John Jones does. Don’t let your
suspicion, Or guess, or copjecture, grow without' exami-
nation till it becomes ineradicable. At any rate, in theo-
retical matters, the best of ideas is hurt by uncritical
acceptance and thrives on critical examination. .

o. .4 mathematical example. Of all quadrilaterals with
given perimeter, find the one that has the greatest area,

1What is the unknown? A quadrilateral.

1% hat are the data? The perimeter of the quadrilateral
is given. '

IVhat is the condition? The required quadrilateral
should have a greater area than any other guadrifateral
with the same perimeter.

This problem is very different from the usfua_l prczb—
lems in elementary geometry and, therefore, it is quite
natural o start guessing. .

Which quadrilateral is likely to be the one with the
greatest area? What would be the simplest guess.? We may
have heard that of all figures with the same perimeter the
circle has the greatest area; we may even suspect some
rcason for the plausibility of this state. jent. Ncmt, which
guadrilateral comes nearest to the circle? Which one
cones nearest to it in symmetry?

~ the rectangle just mentioned is

;; this square is (
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The square is a pretty obvious guess. If we take this
guess seriously, we should realize what it means. We
should have the courage to state it: “Of all quadrilaterals
with given perimeter the square has the greatest area.”
If we decide ourselves to examine this statement, the
situation changes. Originally, we had a “problem to
find.” After having formulated our guess, we have a
“problem to prove”; we have to prove or disprove the
theorem formulated.

If we do not know any problem similar to ours that has
been solved before, we may find our task pretty tough. If
you cannot solve the proposed problem, try to solve first
some related problem. Could you solve a part of the
problem? It may occur to us that if the square is priv-
ileged among quadrilaterals it must, by that very fact,
also be privileged among rectangles. A part of our prob-

lem would be solved if we could succeed in proving the
following statement: “Of all rectangles with given perim-
eter the square has the greatest area.”

This theorem appears more accessible than the former;
it is, of course, weaker. At any rate, we should realize
what it means; we should have the courage to restate it
in more detail. We can restate it advantageously in the
language of algebra.

The area of a rectangle with adjacent sides ¢ and &

s ab. Its perimeter is 2a | 2b.

One side of the square that has the same perimeter as
a+ b

. Thus, the area of

2
g :_ b) . It should be greater than the

area of the rectangle, and so we should have

2
(a b) > ab,
2

#.I8 this true? The same assertion can be written in the
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equivalent form
a2 + 2ab + b2 > 4ab.

This, however, is true, for it is equivalent to

a2 — 2ab+ b2 >0

or Lo

(@—b)2>o0

and this inequality certainly holds, unless a = b, that is,
the rectangle examined is a square.

We have not solved our problem yet, but we have
made some progress just by facing squarely our rather
obvious guesses. -

3. A nonmathematical example. In a certain crossword
puzzle we have to find a word with seven letters, and the
clue is: “‘Do the walls again, back and forth.”#

What is the unknown? A word.

What are the data? The length of the word is given; it
has seven letters.

What is the condition? It is stated in the clue. It has
something to do with walls, yet it is still very hazy.

Thus, we have to reexamine the clue. As we do so, the
last part may catch our attention: “, .. again, back eTnd
forth.” Could you solve a part of the problem? Here is a
chance to guess the beginning of the word. Since t-he
repetition is so strongly emphasized: the word, quite
possibly, might start with “re.”” This is a pretty obwo_us
guess. If we are tempted 10 believe it, we should realize
what it means. The word required would look thus:

Can you check the result? 1f another word of the puz-
zle crosses the one just considered in the first letter, we
have an R to start that other word. 1t may be a good idea

4 The Nation, June g, 1945, Crossword Puzzie, No. 119,
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to switch to that other word and check the R. If we
succeed in verifying that R or if, at least, we do not find
any reason against it, we come back to our original word.
We ask again: What is the condition? As we reexamine
the clue, the very last part may catch our attention:
“ .. back and forth.” Could this imply that the word
we seek can be read not only forward but backward?
This is a less obvious guess (yet there are such cases, see
DECOMPOSING AND RECOMBINING, 8) .

At any rate, let us face this guess; let us realize what it
means. The word would Iook as follows:

RE---ER.

Moreover, the third letter should be the same as the fifth;
it is very likely a consonant and the fourth or middle
letter a vowel.

The reader can now easily guess the word by himself.

If nothing else helps, he can try all the vowels, one after
the other, for the letter in the middle.

Figures are not only the object of geometric problems
but also an important help for all sorts of problems in
which there is nothing geometric at the outset. Thus, we

_bhave two good reasons to consider the role of figures in

solving problems.

1, If our problem is a problem of geometry, we have
to consider a figure. This figure may be in our imagina-

' tion, or it may be traced on paper. On certain occasions,

it might be desirable to imagine the figure without draw-
ing it; but if we have to examine various details, one
detail after the other, it is desirable to draw a figure. 1f
there are many details, we cannot imagine all of them
simultaneously, but they are all together on the paper.

A detail pictured in our imagination may be forgotten;

but the detail traced on paper remains, and, when we
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come back to it, it reminds us of our previous remarks, it
saves us some of the trouble we have in recollecting our
previous consideration.

2. We now consider more specially the use of figures in
problems of geometric construction.

We start the detailed consideration of such a problem
by drawing a figure containing the unknown and the
data, all these elements being assembled as it is pre-
scribed by the condition of the problem. In order to
understand the problem distinctly, we have to consider
each datum and each part of the condition separately;
then we reunite all parts and consider the condition as a
whole, trying to see simultaneocusly the various connec
tions required by the problem. We would scarcely be able
to handle and separate and recombine all these details
without a figure on paper.

On the other hand, before we have solved the problem
definitively, it remains doubtful whether such a figure
can be drawn at all. Is it possible to satisty the whole con-
dition imposed by the problem? We are not entitled to
say Yes before we have obtained the definitive solution;
nevertheless we begin with assuming a figure in which
the unknown is connected with the data as preseribed by
the condition. It seems that, drawing the figure, we have
made an unwarranted assumption.

No, we have not. Not necessarily. We do not act incor-
rectly when, examining our problem, we consider the
possibility that there is an object that satisfies the con-
dition imposed upon the unknown and has, with all the
data, the required relations, provided we do not confuse
mere possibility with certainty. A judge does not act in-
correctly when, questioning the defendant, he considers
the hypothesis that the defendant perpetrated the crime
in question, provided he does not commit himself to this
hypothesis. Both the mathematician and the judge may
examine a possibility without prejudice, postponing their
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judgment till the examination yields some definite re-
sult.

The method of starting the examination of a problem
of construction by drawing a sketch on which, sup-
posedly, the condition is satisfied, goes back to the Greek
geometers. It is hinted by the short, somewhat enigmatic
phrase of Pappus: dssume what is required to be done as
already done. The following recommendation is some-
what less terse but clearer: Draw a hypothetical figure
which supposes the condition of the problem satisfied in
all tis parts.

This is. a recommendation for problems of geometric
construction but in fact there is no need to restrict us to
any such particular kind of problem. We may extend the
recommendation to all “problems to find” stating it in

‘the following general form: Examine the hypothetical

situation in which the condition of the problem is sup-
posed to be fully satisfied.

Compare PAPPUS, 6.

3. Let us discuss a few points about the actual drawing
of figures.

{I) Shé-lll we draw the figures exactly or approxi-
mately, with instruments or free-hand?

Both kmds‘ of figures have their advantages. Exact
figures have, in principle, the same role in geometry as
exact measurements in physics; but, in practice, exact
figures are less important than exact measurements be-

% cause the theorems of geometry are much more exten-

sively verified than the laws of physics. The beginner,
however, should construct many figures as exactly as he
can in order to acquire a good experimental basis; and
exact figures may suggest geometric theorems also to the
more advanced. Yet, for the purpose of reasoning, care-
fully drawn free-hand figures are usually good enough,
and they are much more quickly dome. Of course, the

g figure should not look absurd; lines supposed to be
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straight should not be wavy, and so-called circles should
not look like potatoes.

An inaccurate figure can occasionally suggest a false
conclusion, but the danger is not great and we can pro-
tect ourselves from it by various means, especially by
varying the figure. There is no danger if we concentrate
upon the logical connections and realize that the figure
is a help, but by no means the basis of our conclusions;
the logical connections constitute the real basis. [This
point is instructively illustrated by certain well known
paradoxes which exploit cleverly the intentional inac-
curacy of the figure.]

(i) It is important that the elements are assembled
in the required relations, it is unimportant in which
order they are constructed. Therefore, choose the most
convenient order. For example, to illustrate the idea of
trisection, you wish to draw two angles, « and g, so that
a = gB. Starting from an arbitrary «, you cannot con-
struct g with ruler and compasses. Therefore, you choose
a fairly small, but otherwise arbitrary g and, starting
from g, you construct o which is easy.

(III) Your figure should not suggest any undue spe-
cialization. The different parts of the figure should not
exhibit apparent relations not required by the problem.
Lines should not seem to be equal, or to be perpendicu-
lar, when they are not necessarily so. Triangles should
not seem to be isosceles, or right-angled, when no such
property is required by the problem. The triangle having
the angles 45°, 60°, 75° is the one which, in a precise
sense of the word, is the most “remote” both from the
isosceles, and from the right-angled shape.5 You draw

51f the angles of a triangle are a; B 7 and gu° > &> § >
then at least one of the differences go® — a, & = 8 B— v <15%
unless o = 55°, g = 60°, v = 45°. In fact,
8{go° —a) +2(a—f) + (lﬂ—"r)=l5°
5 ,
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t%ais, or a not very different triangle, if you wish to con-
sider a “general” triangle.

(IV) .In order to emphasize the different roles of dif-
ferent lines, you may use heavy and light lines, contin-
uous anc'i dotted lines, or lines in different col::)rs. You
draw a.lme very lightly if you are not yet quite decided
to use it as an auxiliary line. You may draw the given
elem?nt§ with red pencil, and use other colors to em-
phasize important parts, as a pair of similar triangles, etc

(V) In order to illustrate solid geometry, shall we usF:

- three-dimensional models, or drawi
P win
- blackboard? 8 on paper and

Three-dimensional models are desirable, but trouble-
some to make and expensive to buy. Thus, usually, we
must be satished with drawings although it is not ,eas
to make them impressive. Some experimentation witg
self-made cardboard models is very desirable for begin-
ners. I-t is helpful to take objects of our everyday sur-
roundings as representations of geometric notions. Thus
a box, a tile, or the classroom may represent a rectangu:
lar parallelepiped, a pencil, a circular cylinder, a lamp-
shade, -the frustum of a right circular cone, etc’. g

4. Fr.gures traced on paper are easy to produce, easy to
recognize, easy to remember. Plane figures are especially
famlh'ar to us, problems about plane figures especially
accessible. We may take advantage of this circumstance
we may use our aptitude for handling figures in handling,
nongeometrical objects if we contrive to find a suitable

, geometrical representation for those nongeometrical

objects.

In fact, geometrical representations, graphs and dja-
g;ams of all sorts, are used in all sciences, not only in
Physics, chemistry, and the natural sciences, but also in

& i i
conomics, and even in psychology. Using some suitable

e . .
geometrical representation, we try to express everything
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in the language of figures, to reduce all sorts of problems
to problems of geometry.

Thus, even if your problem is not a problem of geom-
etry, you may try to draw a figure. To find a lucid geo-
metric representation for your nongeometrical problem
could be an important step toward the solution.

Generalization is passing from the consideration of one
object to the consideration of a set containing _that ob-
ject; or passing from the consideration of a restricted set
to that of a more comprehensive set containing the
restricted one.

1. If, by some chance, we come across the sum

1+ 8+ 27 + 64 = 100

we may observe that it can be expressed in the curious
form

]3+23+33+4_3= 102,

Now, it is natural to ask ourselves: Does it often happen
that a sum of successive cubes as

13 4 28 4 g8 4+ <+ + n8

is a square? In asking this, we generalize. This generaliza-
tion is 2 lucky one; it leads from ome observation to a
remarkable general law. Many results were found by
lucky generalizations in mathematics, physics, and the
natural sciences. See INDUCTION AND MATHEMATICAL IN-
DUCTION.

2. Generalization may be useful in the solution of
problems. Consider the following problem of solid geom-
etry: ““A straight line and a regular octahedron are given
in position. Find a plane that passes through the given
line and bisects the volume of the given octahedron.”
This problem may look difficult but, in fact, very little
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familiarity with the shape of the regular octahedron is
sufficient to suggest the following more general problem:
“A straight line and a solid with a center of symmelry
are given in position. Find a plane that passes through
the given line and bisects the volume of the given solid.”
The plane required passes, of course, through the center
of symmetry of the solid, and is determined by this point
and the given line. As the octahedron has a center of
symmetry, our original problem is also solved.

The reader will not fail to observe that the second
problem is more general than the first, and, nevertheless,
much easier than the first. In fact, our main achievement
in solving the first problem was to invent the second
problem. Inventing the second problem, we recognize the
role of the center of symmetry; we disentangled that
property of the octahedron which is essential for the
problem at hand, namely that it has such a center.

The more general problem may be easier to solve. This
sounds paradoxical but, after the foregoing example, 1t
should not be paradoxical to us. The main achievement
in solving the special problem was to invent the general
problem. After the main achievement, only a minor part
of the work remains. Thus, in our case, the solution of

- the general problem is only a minor part of the solution

of the special problem.
See INVENTOR'S PARADOX.
3. “Find the volume of the frustum of a pyramid with

“square base, being given that the side of the lower base 1s

10 in., the side of the upper base 5 in., and the altitude
of the frustum 6 in.” If for the numbers 10, 5, 6 we sub-

3 stitute lecters, for instance @, b, h, we gencralize. We

obtain a more general problem than the original one,
namely the following: “Find the volume of the frustum
of a pyramid with square base, being given that the side

* of the lower base is a, the side of the upper base &, and
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the altitude of the frustum h.” Such generalization may
be very useful. Passing from a problem “in numbers” to
another one “in letters” we gain access to new proce-
dures; we can vary the data, and, doing so, we may check
our results in various ways. See CAN YOU CHECK THE
RESULT? 2, VARJIATION OF THE PROBLEM, 4.

Have you seen it before? It is possible that we have
solved before the same problem that we have to do now,
or that we have heard of it, or that we had a very similar
problem. These are possibilities which we should not
fail to explore. We try to remember what happened.
Have you seen it before? Or have you seen the same prolf-
lem in a slightly different form? Even if the answer is
negative such questions may start the mobilization of
useful knowledge. '

The question in the title of the present article is often
used in 2 more general meaning. In order to obtain the
solution, we have to extract relevant elements from our
memory, we have to mobilize the pertinent parts of our
dormant knowledge (PROGRESS AND ACHIEVEMENT) . W2
cannot know, of course, in advance which parts of our
knowledge may be relevant; but there are certain pos-
sibilities which we should not fail to explore. Thus, any
feature of the present problem that played a role in the
solution of some other problem may play again a role.
Therefore, if any feature of the present problem strikt?s
us as possibly important, we try to recognize it. What 18
it? Is it familiar to you? Have you seen it before?

Here is a problem related to yours and solved b(.:fore'a.
This is good news; a problem for which the solution 15
known and which is connected with our present problem,
is certainly welcome. It is still more welcome if‘ the con-
nection is close and the solution simple. There is a good
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cbhance that such a problem will be useful in solving our
present one.

The situation that we are discussing here is typical and
important. In order to see it clearly let ns compare it
with the situation in which we find ourselves when we
are working at an auxiliary problem. In both cases, our
aim is o solve a certain problem A and we introduce and
consider another problem B in the hope that we may
derive some profit for the solution of the proposed prob-
lem A from the consideration of that other problem B.
The difference is in our relation to B. Here, we suc
ceeded in recollecting an old problem B of which we
know the solution but we do not know yet how 1o use it,
There, we succeeded in inventing a new problem B; we
know (or at least we suspect strongly) how to use B, but
we do not know yet how to solve it. Our difficulty con-
cerning B makes all the difference between the two situ-
ations. When this difficulty is overcome, we may use B in
the same way in both cases; we may use the result or the
method (as explained in AUXILIARY PROBLEM, 3}, and, if
we are lucky, we may use both the result and the method.
In the situation considered here, we know well the solu-
tion of B but we do not know yet how to use it. There-
fore, we ask: Could you use it? Could you use its result?
Could you use its method?

The intention of using a certain formerly solved prob-
lem influences our conception of the present problem.
Trying to link up the two problems, the new and the
old, we introduce into the new problem elements corre-
sponding to certain important elements of the old prob-
lem. For example, our problem is to determine the
sphere circumscribed about a given tetrahedron. This is
a problem of solid geometry. We may remember that we
have solved before the analogous problem of plane
geometry of constructing the circle circumscribed about
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a given triangle. Then we recoliect that in the old prob-
lem of plane geometry, we used the perpendicular bi-
sectors of the sides of the triangle. It is reasonable to try
to introduce something analogous into our present prob-
lem. Thus we may be led to introduce into our present
problem, as corresponding auxiliary elements, the per-
pendicular bisecting planes of the edges of the tetra-
hedron. After this idea, we can easily work out the
solution to the problem of solid geometry, following the
analogous solution in plane geometry.

The foregoing example is typical. The consideration
of a formerly solved related problem leads us to the
introduction of auxiliary elements, and the introduction
of suitable auxiliary elements makes it possible for us to
use the related problem to full advantage in solving our
present problem. We aim at such an effect when, think-
ing about the possible use of a formerly solved related
problem, we ask: Should you introduce some auxiliary
element in order to make its use possible?

Here is a theorem related to yours and proved before,
This version of the remark discussed here is exemplified
in section 19,

Heuristic, or heuretic, or “ars inveniendi” was the
name of a certain branch of study, not very clearly cir-
cumscribed, belonging to logic, or to philosophy, or to
psychology, often outlined, seldom presented in detail,
and as good as forgotten today. The aim of heuristic is to
study the methods and rules of discovery and invention.
A few traces of such study may be found in the com-
mentators of Euclid; a passage of papPUSs is particularly
interesting in this respect. The most famous attempts to
build up a system of heuristic are due to DESCARTES and
to LEIBNITZ, both great mathematicians and philosophers.
Bernard ro1zaNo presented a notable detailed account of
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heuristic. The present booklet is an atiempt to revive
heuristic in a modern and modest form. See MODERN
HEURISTIC.

Heuristic, as an adjective, means “serving to discover.”

Heuristic reasoning is reasoning not regarded as final
and strict but as provisional and plausible only, whose
purpose is to discover the solution of the present prob-
lem. We are ofter: obliged to use heuristic reasoning. We
shall attain compléete certainty when we shall have ob-

" tained the complete solution, but before obtaining cer-

tainty we must often be satisfied with a more or less
plausible guess. We may need the provisional before
we atiain the final. We need heuristic reasoning when we
construct a strict proof as we need scaffolding when we
erect a building.

See siGns OF ProOGREsS. Heuristic reasoning is often
based on induction, or on analogy; see INDUCTION AND
MATHLMATICAL INDUCTION, and ANALOGY, 8, g, 10.6

Heuristic reasoning is good in itself. What is bad is
to mix up heuristic reasoning with rigorous proof.
What is worse is to sell heuristic reasoning for rigorous
proof.

The teaching of certain subjects, especially the teach-
ing of calculus to engineers and physicists, could be essen-
tially improved if the nature of heuristic reasoning were
better understood, both its advantages and its limitations
openly recognized, and if the textbooks would present
heuristic arguments openly. A heuristic argument pre-
sented with taste and frankness may be useful; it may
prepare for the rigorous argument of which it usually
contains certain germs. Bui a heuristic argument is likely
to be hatmful if it is presented ambiguously with visible

€Sce also a paper hy the author in American Mathematical
Monihly, vol. 48, pp. 250-465.
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hesitation between shame and pretension. See WHY
PROOFS?

If you cannot solve the proposed problem do not let
this failure afflict you too much but try to find consola-
tion with some easier success, {ry to solve first some ve-
lated problem; then you may find courage to attack your
original problem again. Do not forget that human superi-
ority consists in going around an obstacle that cannot be
overcome directly, in devising some suitable auxiliary
problem when the original one appears insoluble.

Could you imagine a more accesstble velated problem?
You should now invent a related problem, not merely
remember one; I hope that you have tried already the
question: Do you know a related problem?

The remaining questions in that paragraph of the list
which starts with the title of the present article have a
common aim, the VARIATION OF THE PROBLEM. There are
different means to attain this aim as GENERALIZATION,
SPECIALIZATION, ANALOGY, and others which are various
ways of DECOMPOSING AND RECOMBINING,

Induction and mathematical induction. Induction is
the process of discovering general laws by the observation
and combination of particular instances. It is used in all
sciences, even in mathematics. Mathematical induction
is used in mathematics alone to prove theorems of a
certain kind. It is rather unfortunate that the names are
connected because there is very little logical connection
between the two processes. There is, however, some prac-
tical connection; we often use both methods together.
We are going to illustrate both methods by the same
example.

1. We may observe, by chance, that

14+ 8 + 27 + 64 = 100

Induction and Mathematical Induction 115

and, recognizing the cubes and the square, we may give
to the fact we observed the more interesting form:

184 28 4 g3 4 43 = 302,
How does such a thing happen? Does it often happen

- that such a sum of successive cubes is a square?

In asking this we are like the naturalist who, impressed
by a curious plant or a curious geological formation, con-
ceives a general question. OQur general question 1s con-
cerned with the sum of successive cubes

13 4 23 g8 4 =" 8,
We were led to it by the “particular instance” n = 4.

What can we do for our question? What the naturalist
would do; we can investigate other special cases. The
special cases n = 2, § are still simpler, the case n = 5 is
the next one. Let us add, for the sake of uniformity and
completeness, the case n = 1. Arranging neatly all these
cases, as a geologist would arrange his specimens of a
certain ore, we obtain the following table:

1 = 1= 12
1+8 = 9= 3?
1+ 84 27 = g6 = 62
1+ 84 27+ 64 = 100 = 102

1+ 8 + 27+ 64 + 125 = 225 = 15%

It is hard to believe that all these sums of consecutive
cubes are squares by mere chance. In a similar case, the
naturalist would have little doubt that the general law
suggested by the special cases heretofore observed is cor- -
rect; the general law is almost proved by induction. The
mathematician expresses himself with more reserve al-
though fundamentally, of course, he thinks in the same
fashion. He would say that the following theorem is
strongly suggested by induction:

The sum of the first n cubes is a square.
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2. We have been led to conjecture a remarkable, some-
what mysterious law. Why should those sums of succes-
sive cubes be squares? But, apparently, they are squares.

What would the naturalist do in such a situation? He
would go on examining his conjecture. In so doing, he
may follow various lines of investigation. The naturalist
may accumulate further experimental evidence; 1f we
wish to do the same, we have to test the next cases,
n==6,7, .... The naturalist may also reexamine the
facts whose observation has led him to his conjecture;
he compares them carefully, he tries to disentangle some
deeper regularity, some further analogy. Let us follow
this line of investigation.

Let us reexamine the cases n =1, 2, 8, 4, 5 which we
arranged in our table. Why are all these sums squares?
What can we say about these squares? Their bases are 1,
8, 6, 10, 15. What about these bases? Is there some deeper
regularity, same further analogy? At any rate, they do not
seem to increase too irregularly. How de they increase?
The difference between two successive terms of this se-
quence 1s 1tself increasing,

§—1=2 6G—8~=3 10—6=4, 15— 10=35

Now these differences are conspicuously regular. We may
see here a surprising analogy between the bases of those
squares, we may se¢ a remarkable regularity in the num-
bers 1, §, 6, 10, 15:

1=1
3=1+ 2
6=14+2+43
10=1+2+3+4

15=1+2+ g+ 4+ 5

If this regularity is general (and the contrary is hard to
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believe) the theorem we suspected takes a more precise
form:
Itis, forn=1,2,4,...

13-}-23+33+"-+n3=(1+2+3-{—'”+n)2.

3. The law we just stated was found by induction, and
the manner in which it was found conveys to us an idea
about induction which is necessarily onesided and im-
perfect but not distorted. Induction tries to find regular-
ity and coherence behind the observations. Its most con-
spicuous instruments are generalization, specialization,
analogy. Tentative generalization starts from an effort to
understand the observed facts; it is based on analogy, and
tested by further special cases.

We refrain from further remarks on the subject of
induction about which there is wide disagreement among
philosophers. But it should be added that many mathe-
matical results were found by induction first and proved
later. Mathematics presented with rigor is a systematic
deductive science but mathematics in the making is an
experimental inductive science.

4. In mathematics as in the physical sciences we may
use observation and induction to discover general laws.
But there is a difference. In the physical sciences, there is
no higher authority than observation and induction but
in mathematics there is such an authority: rigorous
proof.

After having worked a while experimentally it may he
good to change our point of view. Let us be strict. We
have discovered an interesting result but the reasoning
that led to it was merely plausible, experimental, pro-
visional, heuristic; let us try to establish it definitively by
a rigorous proof.

We have arrived now at a "“problem to prove”: to
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prove or to disprove the result stated before (see 2,
above) .
There is a minor simplification. We may know that

1+2+3+---+

n{n + 1)
no= ———
2

At any rate, this is easy to verify. Take a rectangle with
sides n and n 4 1, and divide it in two halves by a zigzag
line as in Fig. 15a which shows the case n = 4. Each of
the halves is “staircase-shaped” and its area has the ex-
pression 1+ 2+ -+ pn; for n=4 it is x+2+ 3+ 4,
see Fig. 18b. Now, the whole area of the rectangle is
n(n + 1) of which the staircase-shaped area is one half;
this proves the formula.

FIG, 18

We may transform the result which we found by in-
duction into

2
13+23+33+--.+n3¢(”(”:‘1))

- 1f we have no idca how to prove this result, we may
at least test it. Let us test the first case we have not
tested yet, the case n = 6. For this value, the formula
yields

2
:+8+27+64+ms+216~—-(§—f—3
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and, on computation, this turns out to be true, both
sides being equal to 441.

We can test the formula more effectively. The formula
is, very likely, generally true, true for all values of n.
Does it remain true when we pass from any value n to
the next value n + 1? Along with the formula as written
above (p. 118) we should also have

DSt et e - (SEDEEDY

Now, there is a simple check. Subtracting from this the
formula written above, we obtain

(n + 1)® = ({n + I)Q(” + 2))2 _ (ﬂ(ﬂ ;F 1))2.

This is, however, easy to check. The right hand side may
be written as

()t + 22 =i = () 1 a4 )

2

CE L = o+ 02040 = G+ 02

Our experimentally found formula passed a vital test.
Let us see clearly what this test means. We verified
beyond doubt that

(n -+ 1)3 = ((rz + 1)2(n - 2))2 3 (M)z
We do not know yet whether
4tk gp b = (MDY

is true, But if we knew that this was true we could infer,
by adding the equation which we verified beyond doubt,
that

I3+23+33+'°'+ﬂ3+(ﬂ+1)3=((ﬁ+;)2(??"]"2))2
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is also true which is the same assertion for the next
integer n+ 1. Now, we actually know that our conjec-
ture is true for n = 1, 2, 4, 4, 5, 6. By virtue of what we
have just said, the conjecture, being true for n = 6, must
also be true for n = 4; being true for n = 7 it is true for
n = 8; being true for n = 8 it is true for n = ¢; and so
on. It holds for all %, it is proved to be true generally.

6. The foregoing proof may serve as a pattern in many
similar cases. What are the essential lines of this pattern?

The assertion we have to prove must be given in ad-
vance, in precise form.

The assertion must depend on an integer n.

The assertion must be sufhciently “explicit” so that we
have some possibility of testing whether it remains true
in the passage from 7 to the next integer n + 1.

It we succeed in testing this effectively, we may be able
to use our experience, gained in the process of testing, to
conclude that the assertion must be true for n + 1 pro-
vided it is true for n. When we are so far it is sufficient to
know that the assertion is true for » = 1; hence it follows
for n =2; hence it follows for n = g, and so on; passing
from any integer to the next, we prove the assertion
generally,

This process is so often used that it deserves a name.
We could call it “proof from n to n + 1" or still simpler
“passage to the next integer.” Unfortunately, the ac
cepted technical term is “mathematical induction.” This
name results from a random circumstance. The precise
assertion that we have to prove may come from any
source, and it is immaterial from the logical viewpoint
what the source is. Now, in many cases, as in the case we
discussed here in detail, the source 1s induction, the asser-
tion is found experimentally, and so the proot appears
as a mathematical complement to induction; this ex-
plains the name.
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7. Here is another point, somewhat subtle, but impor-
tant to anybody who desires to find proofs by himself.
In the foregoing, we found two different assertions by
observation and induction, one after the other, the first
under 1, the second under 2; the second was more pre-
cise than the first. Dealing with the second assertion, we
found a possibility of checking the passage from » to
n -+ 1, and so we were able to find a proof by “mathemat-
ical induction.” Dealing with the first assertion, and
ignoring the precision added to it by the second one, we
should scarcely have been able to find such a proof. In
fact, the first assertion is less precise, less “explicit,” less
“tangible,” less accessible to testing and checking than
the second one. Passing from the first to the second, from
the less precise to the more precise statement, was an
important preparative for the final proof.

This circumstance has a paradoxical aspect. The
second assertion is stronger; it implies immediately the
first, whereas the somewhat *“hazy” first assertion can
hardly imply the more “clear-cut” second cne. Thus, the
stronger theorem is easier to master than the weaker
one; this is the INVENTOR'S PARADOX,

Inventor’s paradox. The more ambitious plan may
have more chances of success.

This sounds paradoxical. Yet, when passing from one
problem to another, we may often observe that the new,
more ambitious problem is easier to handle than the
original problem. More questions may be easier to an-
swer than just one question. The more comprehensive
theorem may be easier to prove, the more general prob-
lem may be easier to solve.

The paradox disappears if we look closer at a few
examples (GENERALIZATION, 2; INDUCTION AND MATHEMAT-
ICAL INDUCTION, 7). The more ambitious plan may have
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more chances of success provided it is not based on mere
pretension but on some vision of the things beyond those
immediately present.

Ys it possible to satisfy the condition? Is the condition
sufficient to determine the unknown? Or is it insuffictent?
Or redundant? Or contradiciory?

These questions are often useful at an early stage when
they do not need a final answer but just a provisional
answer, a guess. For examples, see sections 8, 18.

It is good to foresee any feature of the result for which
we work. When we have some idea of what we can ex-
pect, we know better in which direction we should go.
Now, an important feature of a problem is the number
of solutions of which it admits. Most interesting among
problems are those which admit of just one solution; we
are inclined to consider problems with a uniquely deter-
mined solution as the only “reasonable” problems. Is our
problem, in this sense, “reasonable”? If we can answer
this question, even by a plausible guess, our interest in
the problem increases and we can work better.

Is our problem “reasonable”? This question is useful
at an early stage of our work if we can answer it easily.
If the answer is difficult to obtain, the trouble we have
in obtaining it may outweigh the gain in interest. The
same is true of the question “Is it possible to satisfy the
condition?” and the allied questions of our list. We
should put them because the answer might be easy and
plausible, but we should not insist on them when the
answer seems to be difficult or obscure.

The corresponding questions for “problems to prove”
are: Is it likely that the proposition is true? O7 is it move
likely that it is false? The way the question is put shows
clearly that only a guess, a plausible provisional answer,
is expected.
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Leibnitz, Gottfried Wilkelm (1646-1718), great mathe-
matician and philosopher, planned to write an “Art of
Invention” but he never carried through his plan. Nu-
merous fragments dispersed in his works show, how-
ever, that he entertained interesting ideas about the
subject whose importance he often emphasized. Thus,
he wrote: “Nothing is more important than to see the
sources of invention which are, in my opinion, more
interesting than the inventions themselves.”

Lemma means “azuxiliary theorem.” The word is of
Greek origin; a more literal translation would be “what
is assumed.”

We are trying to prove a theorem, say, 4. We are led to
suspect another theorem, say, B; il B were true we could
perhaps, using it, prove 4. We assume B provisionally,
postponing its proof, and go ahead with the proof of 4.

~ Such a theorem B is assumed, and is an auxiliary theorem

to the originally proposed theorem 4. Our little story

is fairly typical and explains the present meaning of the
word “lemma.”

Look at the unknown. This is old advice; the corre-
sponding Latin saying is: “respice finem.” That is, look
at the end. Remember your aim. Do not forget your goal.
Think of what you are desiring to obtain. Do not lose
sight of what is required. Keep in mind what you are
working for. Look at the unknown. Look at the conclu-
sion. The last two versions of “respice finem” are spe-
cifically adapted to mathematical problems, to “problems
to find” and to “problems to prove” respectively.

Focusing our attention on our aim and concentrating

our will on our purpose, we think of ways and means to

attain it. What are the means to this end? How can vou
attain your aim? How can you obtain a result ot this
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kind? What causes could produce such a result? Where
have you seen such a result produced? What do people
usually do to obtain such a result? And try to think of a
familiar problem having the same or a simih’w unknown.
And try to think of a familiar theorem having t»f:e same
or a similar conclusion, Again, the last two versions are
specifically adapted to “problems to find” and to “prob-
lems to prove” respectively. '

1. We are going to consider mathematical prloblems,
“problems to find,” and the suggestion: 71y o think of a
familiar problem having the same unknown. Let us com-
pare this suggestion with that involved in the question:
Do you know a related probleri?

The latter suggestion is more general than the former
one. If a problem is related to another problem, the two
have something in commeon; they may involve a few com-
mon objects or notions, or have some data in common, or
some part of the condition, and so on. Our first sugges-
" tion insists on a particular common point: Thfa two
problems should have the same unknown. That is, the
unknown should be in both cases an object of the same
category, for instance, in both cases the length of a
straight line. .

In comparison with the general suggestion, there is a
certain economy in the special suggestion.

First, we may save some effort in representing the prob-
lem: we must not look at once at the whole problem but
just at the unknown. The problem appears to us schemat-
ically, as

“Givenl......vv.s find the length of the line.”

Second, there is a certain economy of choice. Many,
many problems may be related to the propos§d pl.'oblem,
having some point or other in common Wllth it. But,
looking at the unknown, we restrict our choice; we take
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into consideration only such problems as have the same
unknown. And, of course, among the problems having
the same unknown, we consider first those which are the
most elementary and the most familiar to us.

2. The problem before us has the form:

“Given.......... find the length of the line.”

Now the simplest and most familiar problems of this
kind are concerned with triangles: Given three constit-
uent parts of a triangle find the length of a side. Re-
membering this, we have found something that may be
relevant: Here is a problem related to yours and solved
before. Could you use it2 Could you use iis vesult? In
order to use the familiar results about triangles, we must
have a triangle in our figure. Is there a triangle? Or
should we introduce one in order to profit from those
familiar results? Should you introduce some auxiliary
element in order to make their use possible?

There are several simple problems whose unknown is
the side of a triangle. (They differ from each other in the
data; two angles may be given and one side, or two sides
and one angle, and the position of the angle with respect
to the given sides may be different. Then, all these prob-
lems are particularly simple for right triangles.) With
our attention riveted upon the problem before us, we try
to find out which kind of triangle we should introduce,
which formerly solved problem (with the same unknown
as that before us) we could most conveniently adapt to
our present purpose.

Having introduced a suitable auxiliary triangle, it may
happen that we do not know yet three constituent parts

.+ of it. This, however, is not absolutely necessary; if we

foresee that the missing parts can be obtained somehow

we have made essential progress, we have a plan of the
solution,
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3. The procedure sketched in the foregoing (under 1
and 2) is illustrated, essentially, by section 10 (the illus-
(ration is somewhat obscured by the slowness of the
students) . It is not difficult at all to add many similar
examples. In fact, the solution of almost all “problems
to find” usually proposed in less advanced classes can‘be
started by proper use of the suggestion: And try Lo think
of a familiar problem having the same or a similar un-
known.

We must take such problems schematically, and look
at the unknown first:

(1) Given....... find the length of the line.

(2) Given.......find the angle.

(3) Given....... find the volume of the tetrahedron.
(4) Given....... construct the point.

If we have some experience in dealing with elementary
mathematical problems, we will readily recall some sim-
ple and familiar problem or problems having the same
unknown. If the problem proposed is not one of those
simple familiar problems we naturally try to make use of
what is familiar to us and profit from the result of those
simple problems. We try to introduce some useful well-
known thing into the problem, and doing so we may get
a good start. .

In each of the four cases mentioned there is an obvious
plan, a plausible guess about the future course of the
solutior. .

(1) The unknown should be obtained as a 51.de of
some triangle. It remains to introduce a suitable triangle
with three known, or easily obtainable, constituents.

(2) The unknown should be obtained as an ar}gle in
some triangle. It remains to intreduce a suitable triangle.

(3) The unknown can be obtained if the area of the
base and the length of the altitude are known. It re-
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mains to find the area of a face and the corresponding
altitude.

(4) The unknown should be obtained as the intersec-
tion of two loci each of which is either a circle or a
straight line. It remains to disentangle such Joci from the
proposed condition.

In all these cases the plan is suggested by a simple
problem with the same unknown and by the desire to
use its result or its method. Pursuing such a plan, we may
run into difficulties, of course, but we have some idea to
start with which is a great advantage.

4. There is no such advantage if there is no formerly
solved problem having the same unknown as the pro-
posed problem. In such cases, it is much more difficult to
tackle the propoesed problem.

“Find the area of the surface of a sphere with given
radius.” This problem was solved by Archimedes. There
is scarcely a simpler problem with the same unknown
and there was certainly no such simpler problem of which
Archimedes could have made use. In fact, Archimedes’
solution may be regarded as one of the most notable
mathematical achievements.

“Find the area of the surface of the sphere inscribed
in a tetrahedron whose six edges are given.” If we know

- Archimedes’ result, we need not have Archimedes’ genius

to solve the problem; it remains to express the radius
of the inscribed sphere in terms of the six edges of the
tetrahedron. This is not exactly easy but the dithculty
cannot be compared with that of Archimedes’ problem.

To know or not to know a formerly solved problem
with the same unknown may make all the difference be-
tween an easy and a difficult problem.

5. When Archimedes found the area of the surface of
the sphere he did not know, as we just mentioned, any
formerly solved problem having the same unknown. But
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be knew various formerly solved problems having a simi-
lar unknown. There are curved surfaces whose area is
easier to obtain than thar of the sphere and which were
well known in Archimedes’ time, as the lateral surfaces
of right circular cylinders, of right circular cones, and of
the frustums of such cones. We may be certain that
Archimedes considered carefully these simpler similar
cases, In fact, in his solution, he uses as approximation
to the sphere a composite solid consisting of two cones
and several frustums of cones (see DEFINITION, 6).

If we are unable to find a formerly solved problem
having the same unknown as the problem before us, we
try to find one having a similar unknown. Problems of
the latter kind are less closely related to the problem be-
fore us than problems of the former kind and, therefore,
less easy to use for our purpose in general but they may
be valuable guides nevertheless.

6. We add a few remarks concerning “problems to
prove”; they are analogous to the foregoing more exten-
sive comments on “problems to find.”

We have to prove (or disprove) a clearly stated theo-
rem. Any theorem proved in the past which is in some
way related to the theorem before us has a chance to be
of some service. Yet we may expect the most immediate
service of theorems which have the same conclusion as the
one before us. Knowing this, we look at the conclusion,
that is, we consider our theorem emphasizing the conclu-
sion. Our way of looking at the theorem can be expressed
in writing by a scheme as:

“If..........then the angles are equal.”

We focus our attention upon the conclusion before us
and try to think of a familiar theorem having the same
or a similar conclusion. Especially, we try to think of very
simple familiar theorems of this sort,
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In our case, there are various theorems of this kind and
we may recollect the following: “If two triangles are con-
gruent the corresponding angles are equal.” Here is a
theorem related to yours and proved before. Could you
use 1t? Should you introduce some auxiliary element in
order to make its use possible?

Following these suggestions, and trying to judge the
help afforded by the theorem we recollected, we may con-
ceive a plan: Let us try to prove the equality of the
angles in question from congruent triangles. We see that

~we must introduce a pair of (riangles containing those

angles and prove that they are congruent. Such a plan is
certainly good to start the work and it may lead eventu-
ally to the desired end as in section 19.

7. Let us sum up. Recollecting formerly solved prob-
lems with the same or a similar unknown (formerly
proved theorems with the same or a similar conclusion)
we have a good chance to start in the right direction and
we may conceive a plan of the solution. In simple cases,
which are the most frequent in less advanced classes, the
most elementary problems with the same unknown (the-
orems with the same conclusion) are usually sufficient.
Trying to recollect problems with the same unknown is
an obvious and common-sense device (compare what was
said in this respect in section 4). It is rather surprising
that such a simple and useful device is not more widely
known; the author is inclined to think that it was not
even stated before in full generality. In any case, neither
students nor teachers of mathematics can afford to ignore
the proper use of the suggestion: Look at the unknown!
And try to think of a familiar problem having the same
or a simtlar unknown.

Modern heuristic endeavors to understand the process
of solving problems, especially the mental operations
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typically useful in this process. It has various sources of
information none of which should be neglected. A seri-
ous study of heuristic should take into account both the
logical and the psychological background, it should not
neglect what such older writers as Pappus, Descartes,
Leibnitz, and Bolzano have to say about the subject, but
it should least neglect unbiased experience. Experience in
solving problems and experience in watching other peo-
ple solving problems must be the basis on which heuristic
is built. In this study, we should not neglect any sort of
~ problem, and should find out common features in the
way of handling all sorts of problems; we should aim at
general features, independent of the subject matter of
the problem. The study of heuristic has “practical” aims;
a better understanding of the mental operations typically
useful in solving problems could exert some good influ-
ence on teaching, especially on the teaching of mathe-
matics.

The present book is a first attempt toward the realiza-
tion of this program. We are going to discuss how the
various articles of this Dictionary fit into the program.

1. Our list is, in fact, a list of mental operations typi-
cally useful in solving problems; the questions and sug-
gestions listed hint at such operations. Some of these
operations are described again in the Second Part, and
some of them are more thoroughly discussed and illus-
trated in the First Part.

For additional information about particular questions
and suggestions of the list, the reader should refer to
those fifteen articles of the Dictionary whose titles are
the first sentences of the fifteen paragraphs of the list:
WHAT 1S THE UNKNOWN? IS IT POSSIBLE TO SATISFY THE
CONDITION? DRAW A FIGURE. . . . CAN YOU USE THE RESULT?
The reader, wishing information about a particular item
of the list, should look at the first words of the para-
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graph in which the item is contained and then look up
the article in the Dictionary that has those first words as
title. For instance, the suggestion “Go back to defini-
tions” is contained in the paragraph of the list whose first
sentence is: COULD YOU RESTATE THE PROBLEM? Under this
title, the reader finds a cross-reference to DEFINITION in
which article the suggestion in question is explained and
illustrated.

2. The process of solving problems is a complex proc-
ess that has several different aspects. The twelve principal
articles of this Dictionary study certain of these aspects
at some length; we are going to mention their titles in
what follows.

When we are working intensively, we feel keenly the
progress of our work; we are elated when our progress
is rapid, we are depressed when it is slow. What is essen-
tial t0 PROGRESS AND ACHIEVEMENT in solving problems?
The article discussing this question is often quoted in
other parts of the Dictionary and should be read fairly
early.

Trying to solve a problem, we consider diflerent as-
pects of 1t in turn, we roll it over and over incessantly in
our mind; VARIATION OF THE PROBLEM is essential to our
work. We may vary the problem by DECOMPOSING AND
RECOMBINING its elements, or by going back to the pEFINI-
TION of certain of its terms, or we may use the great
resources of GENERALIZATION, SPECIALIZATION, and ANAL-
ocY. Variation of the problem may lead us to AUXILIARY
ELEMENTS, or to the discovery of a more accessible aux-
ILIARY PROBLEM.

We have to distinguish carefully between two kinds of
problems, PROBLEMS TO FIND, PROBLEMS TO PROVE. Qur
list is specially adapted to “problems to find.” We have
to revise it and change some of its questions and sugges-
tions in order to apply it also to “problems to prove.”
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In al} sorts of problems, but especially in mathematical
problems which are not too simple, suitable NOTATION
and geometrical FIGURES are a great and often indispen-
sable help.

3- The process of solving problems has many aspects
but some of them are not considered at all in this book
and others only very briefly. It is justified, I think, to
exclude from a first short exposition points which could
appear too subtle, or too technical, or too controversial.

Provisional, merely plausible HEURISTIC REASONING iS
important in discovering the solution, but you should not
take it for a proof; you must guess, but also EXAMINE
YOUR GuUEss. The nature of heuristic arguments is dis-
cussed in sIGNS OF PROGREsS, but the discussion could go
further.

The consideration of certain logical patterns is impor-
tant in our subject but it appeared advisable not to
introduce zny technical article. There are only two arti-
cles predominantly devoted to psychological aspects, on
DETERMINATION, HOPE, SUCCESS, and on SUBCONSCIENT
work. There is an incidental remark on animal psy-
chology; see WORKING BACKWARDS.

It is emphasized that all sorts of problems, especially
PRACTICAL PROBLEMS, and even PUZZLES, are within the
scope of heuristic. It is also emphasized that infallible
RULES OF DISCOVERY are beyond the scope of serious re-
search. Heuristic discusses human behavior in the face
of problems; this has been in fashion, presumably, since
the beginning of human society, and the quintessence of
such ancient discussions seems to be preserved in the
WISDOM OF PROVERBS.

4. A few articles on particular questions are included
and some articles on more general aspects are expanded,
becayse they could be, or parts of them could be, of
special interest to students or teachers.
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There are articles discussing methodical questions
often important in elementary mathematics, as PAPPUS,
"WORKING BACKWARDS (already quoted under g}, ReEpucTtIO
AD ABSURDUM AND INDIRECT PROCF, INDUCTION AND MATHE-
MATICAL INDUCTION, SETTING UP EQUATIONS, TEST BY DI-
MENSION, and wHY prRooFs? A few articles address them-
selves more particularly to teachers, as ROUTINE PROBLEMS
and placNosis, and others to students somewhat more
ambitious than the average, a3 THE INTELLIGENT PROBLEM-
SOLVER, THE INTELLIGENT READER, and THE FUTURE MATHE-
MATICIAN.

It may be mentioned here that the dialogues between
the teacher and his students, given in sections 8, 10, 18,
19, 20 and in various articles of the Dictionary may serve
as models not only to the teacher who tries to guide his
class but also to the problem-solver who works by him-
self. To describe thinking as “mental discourse,” as a sort
of conversation of the thinker with himself, is not inap-
propriate. The dialogues in question show the progress
of the solu::on; the problem-solver, talking with himself,
may progress along a similar line.

5. We are not going to exhaust the remaining titles;
just a tew groups will be mentioned.

Some articles contain remarks on the history of our
subject, on DESCARTES, LEIBNITZ, BOLZANO, on HEURISTIC,
on TERMS, OLD AND NEW and on PApPUS (this last one has
been quoted already under 4} .

A few articles explain technical terms: CONDITION,
COROLLARY, LEMMA.

Some articles contain only cross-references (they are
marked with daggers [f] in the Table of Contents).

6. Heuristic aims at generality, at the study of pro-

cedures which are independent of the subject-matter and

apply to all sorts of problems. The present exposition,
however, quotes almost exclusively elementary mathe-
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matical problems as examples. It should not be over-
looked that this is a restriction but it is hoped that this
restriction does not impair seriously the trend of our
study. In fact, elementary mathematical problems pre-
sent all the desirable variety, and the study of their solu-
tion is particularly accessible and interesting. Moreover,
nonmathematical problems although seldom quoted as
examples are never completely forgotten. More advanced
mathematical problems are never directly quoted but
constitute the real background of the present exposition.
The expert mathematician who has some interest for this
sort of study can easily add examples from his own ex-
perience to elucidate the points illustrated by elementary
examples here.

4. The writer of this book wishes to acknowledge his
indebtedness and express his gratitude to a few modern
authors, not quoted in the article on nevRIsTIC. They are
the physicist and philosopher Ermnst Mach, the mathema-
tician Jacques Hadamard, the psychologists William
James and Wolfgang Kohler. He wishes also to quote
the psychologist K. Duncker and the mathematician F.
Krauss whose work (published after his own research
was fairly advanced, and partly published) shows certain
parallel remarks.

Notation. If you wish to realize the advantages of a
well chosen and well known notation try to add a few
not too small numbers with the condition that you are
not allowed to use the familiar Arabic numerals, al-
though you may use, if you wish to write, Roman nu-
merals. Take, for instance, the numbers MMMXC, MDXCVI,
MDCXLVI, MDCCLXXXI, MDCCCLXXXVIIL,

We can scarcely overestimate the importance of mathe-
matical notation. Modern computers, using the decimal
notation, have a great advantage over the ancient com-
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puters who did not have such a convenient manner of
writing the numbers. An average modern student who is
familiar with the usual notation of algebra, analytical
geometry, and the differential and integral calculus, has
an immense advantage over a Greek mathematician in
solving the problems about areas and volumes which
exercised the genius of Archimedes,

1. Speaking and thinking are closely connected, the
use of words assists the mind. Certain philosophers and
philologists went a little further and asserted that the use
ot words is indispensable to the use of reason.

Yet this last assertion appears somewhat exaggerated.
Il we have a little experience of serious mathematical
work we know that we can do a piece of pretty hard
thinking without using any words, just looking at geo-
metric figures or manipulating algebraic symbols, Figures
and symbols are closely connected with mathematical
thinking, their use assists the mind. We could improve
that somewhat narrow assertion of philosophers and
philologists by bringing the words into line with other
sorts of signs and saying that the use of signs appears to
be indispensable to the use of reason.

At any rate, the use of mathematical symbols i5 similar
to the use of words. Mathematical notation appears as a
sort of language, une langue bien faite, a language well
adapted to its purpose, concise and precise, with rules
which, unlike the rules of ordinary grammar, suffer no
exception.

If we accept this viewpoint, SETTING UP EQUATIONS
appears as a sort of translation, translation from ordinary
language into the language of mathematical symbols.

2. Some mathematical symbols, as +, —, =, and several
others, have a fixed traditional meaning, but other sym-
bols, as the small and capital letters of the Roman and
Greck alphabets, are used in diflerent meanings in dif-
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ferent problems. When we face a new problem, we must
choose certain symbols, we have to iniroduce suitable
notation. There is something analogous in the use of
ordinary language. Many words are used in different
meanings in different contexts; when precision is impor-
tant, we have to choose our words carefully.

An important step in solving a problem is to choose
the notation. It should be done carefully. The time we
spend now on choosing the notation may be well repaid
by the time we save later by avoiding hesitation and con-
fusion. Moreover, choosing the notation carefully, we
have to think sharply of the elements of the problem
which must be denoted. Thus, choosing a suitable nota-
tion may contribute essentially to understanding the
problem.

3. A good notation should be unambiguous, pregnant,
easy to remember; it should avoid harmful second mean-
ings, and take advantage of useful second meanings; the
order and connection of signs should suggest the order
and connection of things.

4. Signs must be, first of all, unambiguous. It is inad-
missible that the same symbol denote two different ob-
jects in the same inquiry. If, solving a problem, you call
a certain magnitude a you should avoid calling anything
else ¢ which is connected with the same problem. Of
course, you may use the letter ¢ in a different meaning
in a different problem.

Although it is forbidden to use the same symbol for
different objects it is not forbidden to use different sym-
bols for the same object. Thus, the product of a and &
may be written as

axb a*b ab.

In some cases, it is advantageous to use two or more dif-
ferent signs for the same object, but such cases require
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particular care. Usually, it is better to use just one sign
for one object, and in no case should several signs be used
wantonly.

5 A good sign should be easy to remember and easy to
recognize; the sign should immediately remind us of the
object and the object of the sign.

A simple device to make signs easily recognizable is to
use inzfzals as symbols. For example, in section 20 we used
1 for rate, ¢ for time, ¥V for volume. We cannot nse, how-
ever, initials in zll cases. Thizs, in section 20, we had to
consider a radius but we could not call it r because this
letter was already taken to denote a rate. There are still

_other motives restricting the choice of symbols, and other
means to make them easily recognizable which we are
- going to discuss.
- 6. Notation is not only easily recognizable but par-
“ticularly helpful in shaping our conception when the
. order and connection of the signs suggest the order and
. connection of the objects. We need several examples to
i illustrate this point.
. (1) In order to denote objects which are near to each
: other in the conception of the problem we use letters
: which are near to each other in the alphabet.
~ Thus, we generally use letters at the beginning of the
“alphabet as , b, ¢, for given quantities or constants, and
. letters at the end of the alphabet as x, y, z, for unknown
. quantities or variables.
. In section B we used g, b, ¢ for the given length, width,
‘ and height of a parallelepiped. On this occasion, the nota-
: tion a, b, ¢ was preferable to the notation by initials I, w,
| k. The three lengths played the sarme role in the problem
 which is emphasized by the use of successive letters.
. Moreover, being at the beginning of the alphabet, a, b, ¢
 are, as we just said, the most usual letters to denote given
‘quantities. On some other occasion, if the three lengths
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play different roles and it is important to know which
lengths are horizontal and which one is vertical, the
notation !, w, £ might be preferable.

(1I) In order to denote objects belonging to the same
category, we frequently choose letters belonging to the
same alphabet for one category, using different alphabets
for different categories. Thus, in plane geometry we often
use:

Roman capitals as 4, B, C, . . . for points,
small Roman lettersas a, b, ¢, . . . for lines,
small Greek letters as o, 8, y, . . . for angles.

If there are two objects belonging to different cate-
gories but having some particular relation to each other
which 1s important for our problem, we may choose, to
denote these two objects, corresponding letters of the
respective alphabets as 4 and 4, B and &, and so on. A
familiar example is the usual notation for a triangle:

A, B, C stand for the vertices,
a, b, ¢ for the sides,
o 3, vy for the angles,

It is understood that a is the side opposite to the vertex 4
and the angle at 4 is called o.

(11} In section 20, the letters a, d, x, y are particu-
larly well chosen to indicate the nature and connection
of the elements denoted. The letters ¢, & hint that the
magnitudes denoted are constants; x, ¥ indicate variables;
a precedes b as x precedes y and this suggests that g is in
the same relation to b as x is to y. In fact, ¢ and x are
horizontal, b and y vertical, and a: &b = x : y.

4. The notation

A ABC ~ A EFG

indicates that the two triangles in question are similar.
In modern books, the formula is meant to indicate that
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the two triangles are similar, the vertices corresponding
to each other in the order as they are written, 4 to E, B
to F, C to G. In older books, this proviso about the order
was not yvet introduced; the reader had to look at the
figure or remember the derivation in order to ascertain
which vertex corresponded to which.

The modern notation is much preferable to the older
one. Using the modern notation, we¢ may draw conse-
quences from the formula without locking at the figure.
Thus, we may derive that

LA~ /E
AB : BC = EF : FG

and other relations of the same kind. The older notation
expresses less and does not allow such defnite conse-
quences.

A notation expressing more than another may be
termed more pregnani. The modern notation for simili-
tude of iriangles is more pregnant than the older one,
reflects the order and connection of things more fully
than the older one, and therefore, it may serve as basis
far more consequences than the older one.

8. Words have second meanings. Certain contexts in
which a word is often used influence it and add some-
thing to its primary meaning, some shade, or second
meaning, or “connotation.” If we write carefully, we try
to choose among the words having almost the same mean-
ing the one whose second meaning is best adapted.

There is something similar in mathematical notation.
Even mathematical symbols may acquire a sort of second

- meaning from contexts in which they are often used. If

we choose our notation carefully, we have to take this

circumstance into account. Let us illustrate the point.
There are certain letters which have acquired a firmly

rooted, traditional meaning. Thus, ¢ stands usually for
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the basis of natural logarithms, ; for v/ —1, the imaginary
unit, and 7 for the ratio of the circumference of the
circle to the diameter. It is on the whole better to use
such symbols only in their traditional meaning. If we use
such 2 symbol in some other meaning its traditional
meaning could occasionally interfere and be embarrass-
ing, even misleading. It is true that harmful second
meanings of this sort give less trouble to the beginner
who has not yet studied many subjects than to the mathe-
matician who should have sufficient experience to deal
with such nuisances.

Second meanings of the symbols can also be helpful,
even very helpful, if they are used with tact. A notation
used on former occasions may assist us in recalling some
useful procedure; of course, we should be sufficiently
careful to separate clearly the present (primary) mean-
ing of the symbol from its former (secondary) mean-
ing. A standing notation [as the traditional notation for
the parts of the triangle which we mentioned before,
6 (II}} has great advantages; used on several former
occasions it may assist us in recalling various formerly
used procedures. We remember our formulas in some
standing notation. Of course, we should be sufficiently
careful when, owing to particular circumstances, we are
obliged to use a standing notation in a meaning some-
what different from the usual one.

9. When we have to choose between two notations,
one reason may speak for one, and some other reason for
the other. We need experience and taste to choose the
more suitable notation as we need experience and taste
to choose more suitable words. Yet it is good to know the
various advantages and disadvantages discussed in the
foregoing. At any rate, we should choose our notation
carefully, and have some good reason for our choice.

10. Not only the most hopeless boys in the class but
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also quite intelligent students may have an aversion for
algebra. There is always something arbitrary and artifi-
cial about notation; to learn a2 new notation is a burden
for the memory, The inteclligent student refuses to as-
sume the burden if he does not see any compensation for
it. The intelligent student is justified in his aversion for
algebra if ‘he is not given ample opportunity to convince
himself by his own experience that the language of
mathematical symbols assists the mind. To help him to
such experience is an important task of the teacher, one
of his most important tasks.

I say that it is an important task but I do not say that
it Is an casy one. The foregoing remarks may be of some
help. See also sETTING UP EQUATIONS. Checking a formula
by extensive discussion of its properties may be recoms-
mended as a particularly instructive exercise; see section
14 and ©cAN YOU CHECK THE RESULT? 2.

Pappus, an important Greek mathematician, lived
probably around A.p. goo. In the seventh book of his
Collectiones, Pappus reports about a branch of study
which he calls analyomenos. We can render this name
in English as “Treasury of Analysis,” or as “Art of
Solving Problems,” or even as “Heuristic”; the last term
secems to be preferable here. A good English translation
of Pappus’s report is easily accessible?; what follows is a
free rendering of the original text:

“The so-called Heuristic is, to put it shortly, a special
body of doctrine for the use of those who, after having
studied the ordinary Elements, are desirous of acquiring
the ability to solve mathematical problems, and it is use-
ful for this alone. It is the work of three men, Euclid,
the author of the Elements, Apollonius of Perga, and

?T. L. Heath, The Thirteen Books of Euclid’s Elements, Cam-
bridge, 1goB, vol. 1, p. 158,
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Aristaeus the elder. It teaches the procedures of analysis
and synthesis. ]

“In analysis, we start from what is required, we take it
for granted, and we draw consequences from it, and con-
sequences from the consequences, till we reach a peint
that we can use as starting point in synthesis. For in
analysis we assurne what is required to be done as already
done (what is sought as already found, what we have to
prove as true). We inquire from what antecedent the
desired result could be derived; then we inquire again
what could be the antecedent of that antecedent, and so
en, until passing from antecedent to antecedent, we come
eventually upon something already known or admittedly
true. This procedure we call analysis, or solution back-
wards, or regressive reasoning.

“But in synthesis, reversing the process, we start from
the point which we reached last of all in the analysis,
from the thing already known or admittedly true. We
derive from it what preceded it in the analysis, and go
on making derivations until, retracing our steps, we
finally succeed in arriving at what is required. This pro-
cedure we call synthesis, or constructive solution, or
progressive reasoning.

“Now analysis 15 of two kinds; the one is the analysis
of the ‘problems to prove’ and aims at establishing true
theorems; the other is the analysis of the ‘problems to
find’ and aims at finding the unknown.

“If we have a ‘problem to prove’ we are required to
prove or disprove a clearly stated theorem 4. We do not
know yet whether A is true or false; but we derive from
A another theorem B, from B another C, and so on, until
we come upon a last theorem L about which we have
definite knowledge. If L is true, 4 will be also true, pro-
vided that all our derivations are convertible. From L
we prove the theorem K which preceded L in the analysis
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and, proceding in the same way, we retrace our steps;
from C we prove B, from B we prove 4, and so we attain
our aim. If, however, L is false, we have proved 4 false.

“If we have a ‘problem to find’ we are required to find
a certain unknown x satisfying a clearly stated condition.
We do not know yet whether a thing satisfying such a
condition is possible or not; but assuming that there 1s
an x satisfying the condition imposed we derive from it
another unknown y which has to satisfy a related con-
dition; then we link y to still another unknown, and so
on, until we come upon a last unknown z which we can
find by some known method. If there is actuailj.: az
satisfying the condition imposed upon it, there will be
also an x satisfying the original condition, provided that
all our derivations are convertible. We first find z; then,
knowing z, we find the unknown that preceded z in the
analysis; proceeding in the same way, we retrace our
steps, and finally, knowing y, we obtain x, and so we
attain our aim. If, however, there is nothing that would
satisfy the condition imposed upon z, the problem con-
cerning x has no solution.”

We should not forget that the foregoing is not a literal
translation but a free rendering, a paraphrase. Various
differences between the original and the paraphrase de-
serve comment, for Pappus’s text is important in many
ways. -

1. Our paraphrase uses a more definite terminology
than the original and introduces the symbols 4, B, . . . L,
%, Y, ...z which the original has not. '

2. The paraphrase has (p. 141, line 30) “mathematical
problems” where the original means "geometrica'l prob-
lems.” This emphasizes that the procedures described by
Pappus are by no means resiricted to geometric prol:f-
lems; they are, in fact, not even restricted to mathemati-
cal problems. We have to illustrate this by examples
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since, in these matters, generality and independence from
the nature of the subject are important (see section 3),
8- Aigebraic illustration. Find x satisfying the equation

8(4°+ 47%) — 54(2°+ 27%) + 101 = 0.

This is a “problem to find,” not too easy for a beginner.
He has to be familiar with the idea of analysis; not with
the word “analysis” of course, but with the idea of at-
taining the aim by repeated reduction. Moreover, he has
to be familiar with the simplest sorts of equations. Even
with some knowledge, it takes a good idea, a little luck,
a little invention to observe that, since 4* = (2%)2 and
47% = (2%)7%, it may be advantageous to introduce

y = 2°.

Now, this substitution is really advantageous, the equa-
tion obtained fory

8(3;2 —|—%) —54(y—§—;—)+ 101 = 0
appears simpler than the original equation; but our task

is not yet finished. It needs another little invention, an-
other substitution

I
2 == + -
Y y
which transforms the condition into
822 — pqz+ 8y = 0.

Here the analysis ends, provided that the problem-solver
is acquainted with the solution of quadratic equations.

What is the synthesis? Carrying through, step by step,
the calculations whose possibility was foreseen by the
analysis. The problem-solver needs no new idea to finish
his problem, only some patience and attention in calcu-
lating the various unknowns. The order of calculation is
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opposite to the order of invention; first z is found
(z=5/2, 17/4), then y (¥ = 2, 1/2, 4, 1/4), and finally
the originally required x (x = 1, —1, 2, —2). The syn-
thesis retraces the steps of the analysis, and it is easy to
see in the present case why it does so.

4. Nonmathematical illustration. A primitive man
wishes to cross a creek; but he cannot do so in the usual
way because the water has risen overnight. Thus, the
crossing becomes the object of a problem; “crossing the
creek” is the x of this primitive problem. The man may
recall that he has crossed some other creek by walking
along a fallen tree. He looks around for a suitable fallen
tree which becomes his new unknown, his y. He cannot
find any suitable tree but there are plenty ot trees stand-
ing along the creek; he wishes that one of them would
fall. Could he make a tree fall across the creek? There is
a great idea and there is a new unknown; by what means
could he tilt the tree over the creek?

This train of ideas ought to be called analysis if we
accept the terminology of Pappus. If the primitive man
succeeds in finishing his analysis he may become the in-
ventor of the bridge and of the axe. What will be the
synthesis? Translation of ideas into actions. The finish-
ing act of the synthesis is walking along a tree across the
creek,

The same objects fili the analysis and the synthesis;
they exercise the mind of the man in the analysis and his
muscles in the synthesis; the analysis consists in thoughts,
the synthesis in acts. There is another difference; the
order is reversed, Walking across the creek is the first

desire from which the analysis starts and it is the last

act with which the synthesis ends.

5. The paraphrase hints a little more distinctly than
the original the natural connection between analysis and
synthesis. This connection 15 manifest after the foregoing



146 Pappus

examples. Analysis comes naturally first, synthesis after-
wards; analysis is invention, synthesis, execution; analy-
sis is devising a plan, synthesis carrying through the plan.

6. The paraphrase preserves and even emphasizes cer-
tain curious phrases of the original: “assume what is
required to be done as already done, what is sought as
found, what you have to prove as true.” This is paradoxi-
cal; is it not mere self-deception to assume that the
problem that we have to solve is solved? This is obscure;
what does it mean? If we consider closely the context and
try honestly to understand our own experience in solving
problems, the meaning can scarcely be doubtful.

Let us first consider a “problem to find.” Let us call the
unknown x and the data a, b, ¢. To “assume the problem
as solved” means to assume that there exists an object x
satisfying the condition—that is, having those relations
to the data a, b, ¢ which the condition prescribes. This
assumption is made just in order to start the analysis, it
is provisional, and it is harmless. For, if there is no such
object and the analysis teads us anywhere, it is bound
to lead us to a final problem that has no solution and
hence it will be manifest that our original problem has
no solution. Then, the assumption is useful. In order to
examine the condition, we have to conceive, to represent
to ourselves, or to visualize geometrically the relations
which the condition prescribes between x and a, b, c;
how could we do so without conceiving, representing, or
visualizing x as existent? Finally, the assumption is nat-
ural. The primitive man whose thoughts and deeds we
discussed in comment 4 imagines himself walking on a
fallen tree and crossing the creek long before he actually
can do so; he sees his prablem “as solved.”

The object of a “problem to prove” is to prave a cer-
tain theorem A. The advice to “assume 4 as true” is just
an invitation to draw consequences from the theorem A4

Pappus 147

although we have not yet proved it. People with a certain
mental character or a certain philosophy may shrink
from drawing consequences from an unproved theorem;
but such people cannot start an analysis.

Compare FIGURES, 2.

7. The paraphrase uses twice the important phrase
“provided that all our derivations are convertible”; see
p- 142, line 33 and p. 148, lines 14-15. This is an inter-
polation; the original contains nothing of the sort and
the lack of such a proviso was observed and criticized in
modern times. See AUXILIARY PROBLEM, 6 for the notion
of “convertible reduction.”

8. The “analysis of the problems to prove” is explained
in the paraphrase in words quite different from ihose
used by the original but there is no change in the sense;
at any rate, there is no intention to change the sense.
The analysis of the “problem to find,” however, is ex-
plained more concretely in the paraphrase than in the
original. The original seems to aim at the description of
a somewhat more general procedure, the construction of
a chain of equivalent auxiliary problems which is de-
scribed in AUXILIARY PROBLEM, 7.

g. Many elementary textbooks of geometry contain a
few remarks about analysis, synthesis, and “assuming the
problem as solved.” There is little doubt that this almost
ineradicable tradition goes back to Pappus, although
there is bardly a current textbook whose writer would
show any direct acquaintance with Pappus. The subject
is important encugh to be mentioned in elementary text-
books but easily misunderstood. The circumstance alone
that it is restricted to textbooks of geometry shows a cur-
rent lack of understanding; see comment 2 above. If the
foregoing comments could contribute to a better under-

standing of this matter their length would be amply
Justified.
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For another example, a different viewpoint, and
further comments sec WORKING BACKWARDS.

Compare also REDUGTIO AD ABSURDUM AND INDIRECT
PROOF, 2.

Pedanwry and mastery are opposite attitudes toward
rules.

1. To apply a rule to the lctter, rigidly, unquestion-
ingly, in cases where it hits and in cases where it does not
fit, is pedantry. Some pedants are poor fools; they never
did understand the rule which they apply so conscien-
tiously and so indiscriminately. Some pedants are quite
successful; they understood their rule, at least in the
beginning (before they became pedants), and chose a
good one that fits in many cases and fails only occasion-
ally. _

To apply a rule with natural ease, with judgment,
noticing the cases where it fits, and without ever letting
the words of the ruie obscure the purpose of the action
or the opportuniues of he situation, ls mastery.

2. The questions and suggestions of our list may be
helpful both to problem-solvers and to teachers. But,
first, they must be understood, their proper use must be
learned, and learned by trial and error, by failure and
success, by experience in applying them. Second, their
use should never become pedantic. You should ask no
question, make no suggestion, indiscriminately, follow-
ing some rigid habit. Be prepared for various questions
and suggestions and use your judgment. You are doing
a hard and exciting problem; the step you are going to
try next should be prompted by an attentive and open-
minded consideration of the problem before you. Yon
wish to help a student; what you say to your student
should proceed from a sympathetic understanding of his
difficulties.
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And if you are inclined to be a pedant and must rely

upon some rule learn this one: Always use your own
brains first.

Practical problems are different in various respects
from purely mathematical problems, yet the principal
motives and procedures of the solution are essentially the
same. Practical engineering problems usually involve
mathematical problems. We will say a few words about
the differences, analogies, and connections between these
two sorts of problems.

1. An impressive practical problem is the construction
of a dam across a river. We need no special knowledge
to understand this problem. In almost prehistoric times,
long before our modern age of scientific theories, men
built dams of some sort in the valley of the Nile, and in
other parts of the world, where the crops depended on
irrigation.

Let us visualize the problem of constructing an impor-
tant modern dam,

What is the unknown? Many unknowns are involved
in a problem of this kind: the exact location of the dam,
its geometric shape and dimensions, the materials used
in its construction, and so on.

What is the condition? We cannot answer this question
in one short sentence because there are many conditions.
In so large a project it is necessary to satisfy many im-
portant economic needs and to hurt other needs as little
as possible. The dam should provide electric power, sup-
ply water for irrigation or the use of certain communities,
and also help to control ficods. On the other hand, it
should disturb as little as possible navigation, or eco-
nomically important fish-life, or beautiful scenery; and

- 8o forth. And, of course, it should cost as little as possible

me L

and be constructed as quickly as possible.
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What are the data? The multitude of desirable data is
tremendous. We need topographical data concerning the
vicinity of the river and its tributaries; geological data
important for the solidity of foundations, possible leak-
age, and available materials of construction; meteorologi-
cal data about annual precipitation and the height of
floods; economic data concerning the value of ground
which will be flooded, cost of materials and laber; and
$0 on.

Our example shows that unknowns, data, and condi-
tions are more complex and less sharply defined in a
practical problem than in a mathematical problem.

2. In order to solve a problem, we need a certain
amount of previously acquired knowledge. The modern
engineer has a highly specialized body of knowledge at
his disposal, a scientific theory of the strength of mate-
rials, his own experience, and the mass of engineering
experience stored in special technical literature. We can-
not avail ourselves of such special knowledge here but
we may try to imagine what was in the mind of an
ancient Egyptian dam-builder.

He has seen, of course, various other, perhaps smaller,
dams: banks of earth or masonry holding back the water.
He has seen the flood, laden with all sorts of debris,
pressing against the bank. He might have helped to re-
pair the cracks and the erosion left by the fiood. He
might have seen a dam break, giving way under the
impact of the flood. He has certainly heard stories about
dams withstanding the test of centuries or causing catas-
trophe by an unexpected break. His mind may have
pictured the pressure of the river against the surface of
the dam and the strain and stress in its interior.

Yet the Egyptian dam-builder had no precise, quanti-
tative, scientific concepts of fluid pressure or of strain and
stress in a solid body. Such concepts form an essential
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part of the intellectual equipment of a modern engineer.
Yet the latter also uses much knowledge which has not
yet quite reached a precise, scientific level; what he
knows about erosion by flowing water, the transportation
of silt, the plasticity and other not quite clearly circum-
scribed properties of certain materials, is knowledge of
a rather empirical character.

Our example shows that the knowledge needed and the
concepts used are more complex and less sharply defined
in practical problems than in mathematical problems,

3. Unknowns, data, conditions, concepts, necessary
preliminary knowledge, everything is more complex and
less sharp in practical problems than in purely mathe-
matical problems. This is an important difference, per-
haps the main difference, and it certainly implies further
differences; yet the fundamental motives and procedures
of the solution appear to be the same for both sorts of
problems.

There is a widespread opinion that practical problems
need more experience than mathematical problems. This
may be so. Yet, very likely, the difference lies in the
natyre of the knowledge needed and not in our attitude
toward the problem. In solving a problem of one or the
other kind, we have to rely on our experience with simi-
lar problems and we often ask the questions: Have you
seen the same problem in a slightly different form? Do
you know a related problem?

In solving a mathematical problem, we start from very
clear concepts which are fairly well ordered in our mind.
In solving a practical problem, we are often obliged to
start from rather hazy ideas; then, the clarification of the
concepts may become an important part of the problem.
Thus, medical science is in a better position to check
infectious diseases today than it was in the times before
Pasteur when the notion of infection itself was rather
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hazy. Have you taken into account all essential notions
involved in the problem? This is a good question for all
sorts of problems but its use varies widely with the nature
of the intervening notions.

In a perfectly stated mathematical problem all data
and all clauses of the condition are essential and must be
taken into account. In practical problems we have a mul-
titude of data and conditions; we take into account as
many as we can but we are obliged to neglect some, Take
the case of the designer of a large dam. He considers the
public interest and important economic interests but he
1s bound to disregard certain petty claims and grievances.
The data of his problem are, strictly speaking, inex-
haustible. For instance, he would like to know a little
more zbout the geologic nature of the ground on which
the foundations must be laid, but eventually he must
stop collecting geologic data although a certain margin
of uncertainty unavoidably remains.

Did you use all the data? Did you use the whole con-
dition? We cannot miss these questions when we deal
with purely mathematical problems. In practical prob-
lems, however, we should put these questions in a modi-
fied form: Did you use all the data which could con-
trtbute appreciably to the solution? Did you use all the
conditions which could influence appreciably the solu-
tion? We take stock of the available relevant informa-
tion, we collect more information if necessary, but
eventually we must stop collecting, we must draw the
line somewhere, we cannot help neglecting something.
“If you will sail without danger, you must never put to
sea.”” Quite often, there is a great surplus of data which
have no appreciable influence on the final form of the
solution.

4. The designers of the ancient Egyptian dams had to
rely on the conmon-sense interpretation of their experi-

Practical Problems 153

ence, they had nothing else to rely on. The modern
engineer cannot rely on common sense alone, especially
if his project is of a new and daring design; he has to cal-
culate the resistance of the projected dam, foresee quan-
titatively the strain and stress in its interior. For this
purpose, he has to apply the theory of elasticity (which
applies fairly well to constructions in concrete). To
apply this theory, he needs a good deal of mathematics;
the practical engineering problem leads to a mathemati-
cal problem.

This mathematical problem is too technical to be dis-
cussed here; all we can say about it is a general remark.
In setting up and in solving mathematical problems de-
rived froui practical problems, we usually content our-
selves with an approximation. We are bound to neglect
some minor data and conditions of the practical prob-
lem. Therefore it is reasonable to allow some slight
inaccuracy in the computations especially when we can
gain in simplicity what we lose in accuracy.

5. Much could be said about approximations that
would deserve general interest. We cannot suppose, how-
ever, any specialized mathematical knowledge and there-
fore we restrict ourselves to just one intuitive and
instructive example.

The drawing of geographic maps is an important prac-
tical problem. Devising a map, we often assume that the
earth is a sphere. Now this is only an approximate as-
sumption and not the exact truth. The surface of the
earth is not at all a mathematically defined surface and
we definitely know that the earth is Hattened at the poles.
Assuming, however, that the earth is a sphere, we may
draw a map of it much more easily. We gain much in
simplicity and do not lose a great deal in accuracy. In
fact, let us imagine a big ball that has exactly the shape
of the earth and that has a diameter of 25 feect at its
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equator. The distance between the poles of such a ball is
less than 25 feet because the earth is flattened, but only
about one inch less, Thus the sphere yields a good prac-
tical approximation.

Problems to find, problems to prove. We draw a paral-
lel between these two kinds of problems.

1. The aim of a “problem to find” is to find a certain
object, the unknown of the problem.

The unknown is also called “quaesitum,” or the thing
sought, or the thing required. “Problems to find” may be
theoretical or practical, abstract or concrete, serious prob-
lems or mere puzzles. We may seek all sorts of unknowns;
we may try to find, to abtain, to acquire, to produce, or
to construct all imaginable kinds of objects. In the prob-
lem of the mystery story the unknown is a murderer. In
a chess problem the unknown is a move of the chessmen.
In certain riddles the unknown is a word. In certain ele-
mentary problems of algebra the unknown is a number.
In a problem of geometric construction the unknown is
a figure.

2. The aim of a “problem to prove” is to show con-
clusively that a certain clearly stated assertion is true, of
else to show that it is false. We have to answer the ques-
tion: Is this assertion true or false? And we have to
answer conclusively, either by proving the assertion true,
or by proving it false.

A witness affirns that the defendant stayed at home a
certain night. The judge has to find out whether this
assertion is true or not and, moreover, he has to give as
good grounds as possible for his finding. Thus, the judge
has a “problem to prove.” Another “problem to prove”
is to “prove the theorem of Pythagoras.” We do not say:
“Prove or disprove the theorem of Pythagoras.” It would
be better in some respects to include in the statement of
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the problem the possibility of disproving, but we may
neglect it, because we know that the chances for disprov-
ing the theorem ol Pythagoras are rather slight.

4- The principal parts of a “problem to find” are the
unknown, the deta, and the condition,

If we have to construct a triangle with sides a, &, ¢, the
unknown is a triangle, the data are the three lengths ¢,
b, ¢, and the triangle is required to satisfy the condition
that its sides have the given lengths a, &, c. If we have to
construct a triangle whose altitudes are a, b, ¢, the un-
known is an object of the same category as before, the
data are the same, but the condition linking the unknown
to the data is different.

4. 1f a “problem to prove” is a mathematical problem
of the usual kind, its principal parts are the hypothesis
and the conclusion of the theorem which has to be proved
or disproved.

“If the four sides of a guadrilateral are equal, then the
two diagomals are perpendicular to each other.” The
second part starting with “then” is the conclusion, the
first part starting with “if” is the hypothesis.

[Not all mathematical theorems can be split naturally
into hypothesis and conclusion. Thus, it is scarcely pos-
sible to split so the theorem: “There are an infinity of
prime numbers.”]

5. If you wish to solve a “problem to find” you must
know, and know very exactly, its principal parts, the
unknown, the data, and the condition. Our list contains
many questions and suggestions concerned with these
parts.

What is the unknown? What are the data? What ts the
condition?

Separate the various parts of the condition.

Find the connection belween the data and the un-
Ruoun.
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Look at the unknown! And try to think of a familiar
problem having the same or a similar unknown.

Keep only a part of the condition, drop the other pari;
how far is the unknown then determined, how can it
vary? Could you derive something useful from the data?
Could you think of other data appropriate to determine
the unknown? Could you change the unknown, or the
data, or both if necessary, so that the new unknown and
the new data are nearer to each other?

Did you use all the date? Did you use the whole con-
dition?

6. If you wish to solve a “problem to prove” you must
know, and know very exactly, its principal parts, the
hypothesis, and the conclusion. There are useful ques-
tions and suggestions concerning these parts which cor-
respond to those questions and suggestions of our list
which are specially adapted to “problems to find.”

What s the hypothesis? What is the conclusion?

Separate the various paris of the hypothesis.

Find the connection between the hypothesis and the
conclusion.

Look at the conclusion! And iry to think of e familiar
theorem having the same or a similar conclusion.

Keep only a part of the hypothesis, drop the other
part; is the conclusion still valid? Could you derive some-
thing useful from the hypothesis? Could you think of
another hypothesis from which you could easily derive
the conclusion? Could you change the hypothests, or the
conclusion, or both if necessary, so that the new hypoth-
esis and the new conclusion are nearer to each other?

Did you use the whole hypothesis?

7. “Problems to find” are more important in elemen-
tary mathematics, *“problems to prove” more important
in advanced mathematics. In the present book, “prob-
lems to find” are more emphasized than the other kind,
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but the author hopes to reestablish the balance in a fuller
treatment of the subject.

Progress and achievement. Have you made any prog-
resst What was the essential achievement? We may ad-
dress questions of this kind to ourselves when we are
solving a problem or to a student whose work we super-
vise. Thus, we are used to judge, more or less confidently,
progress and achievement in concrete cases. The step
from such concrete cases to a general description is not
easy at all. Yet we have to undertake this step if we wish
to make our study of heuristic somewhat complete and
we must try to clarify what constitutes, in general, prog-
ress and achievement in solving problems.

1. In order to solve a problem, we must have some
knowledge of the subject-matter and we must select and
collect the relevant items of our existing but initially
dormant knowledge. There is much more in our con-
ception of the problem at the end than was in it at the
outset; what has been added? What we have succeeded
in extracting from our memory. In order to obtain the
solution we have to recall various essential facts. We have
to recollect formerly solved problems, known theorems,
definitions, if our problem is mathematical. Extracting
such relevant elements from our memory may be termed
mobilization.

2. In order to solve a problem, however, it is not
enough to recollect isolated facts, we must combine these
facts, and their combination must be well adapted to the
problem at hand. Thus, in solving a mathematical prob-
lem, we have to construct an argument connecting the
materials recollected to a well adapted whole. This
adapting and combining activity may be termed organ-
ization.

3. In fact, mobilization and organization can never be
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really separated. Working at the problem with concentra-
tion, we recall only facts which are more or less con-
nected with our purpose, and we have nothing to connect
and organize but materials we have recollected and
mobilized.

Mobilization and organization are but two aspects of
the same complex process which has still many other
aspects.

4- Another aspect of the progress of our work is that
our mode of conception changes. Enriched with all the
materials which we have recalled, adapted to it, and
worked into it, our conception of the problem is much
fuller at the end than it was at the outset. Desiring to
proceed from our initial conception of the problem to a
more adequate, better adapted conception, we try various
standpoints and view the problem from different sides.
We could make hardly any progress without VARIATION
OF THE PROBLEM.

5. As we progress toward our final goal we sze more
and more of it, and when we see it better we judge that we
are nearer to it. As our examination of the problem ad-
vances, we foresee more and more clearly what should be
done for the solution and how it should be done. Solving
a mathematical problem we may foresee, if we are lucky,
that a certain known theorem might be used, that the
consideration of a certain formerly solved problem might
be helpful, that going back to the meaning of a certain
technical term might be necessary, We do not foresee
such things with certainty, only with a certain degree of
plausibility. We shall attain complete certainty when we
have obtained the complete solution, but before obtain-
ing certainty we must often be satisfied with a more or
less plausible guess. Without considerations which are
only plausible and provisional, we could never find the
solution which is certain and final. We need HEURISTIC
REASONING.
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6. What is progress toward the solution? Advancing
mobilization and organization of our knowledge, evolu-
tion of our conception of the problem, increasing pre-
vision of the steps which will constitute the final
argument. We may advance steadily, by small imper-
ceptible steps, but now and then we advance abruptly,
by leaps and bounds. A sudden advance toward the solu-
tion is called a BRIGHT IDEA, a good idea, a happy
thought, a brain-wave (in German there is a2 more tech-
nical term, Einfall). Whar is a bright idea? An abrupt
and momentous change of our outlook, a sudden reor-
ganization of our mode of conceiving the problem, a just
emerging confident prevision of the steps we have to take
in order to attain the solution,

7. The foregoing considerations provide the questions
and suggestions of our list with the right sort of back-
fround.

Many of these questions and suggestions aim directly
at the mobilization of our formerly acquired knowledge:
Hauve you seen it before? Or nave you seen the same prob-
lem in a slightly different form? Do you know a related
problem? Do you know a theorem that could be useful?
Look at the unknown! And iry to think of a familiar
problem having the same or a similar unknown.

There are typical situations in which we think that we
have collected the right sort of material and we work for
a better organization of what we have mobilized: Here
15 a problem related to yours and solved before. Could
you use it? Could you wuse its result? Could you use its
method? Should you introduce some auxiliary element in
order to make its use possible?

There are other typical situations in which we think
that we have not yet collected enough material. We
wonder what is missing: Did you use all the data? Did
you use the whole condition? Have you taken into ac-
count all essential notions involved in the problem?
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Some questions aim directly at the wvariation of the
problem: Could you restate the problem? Could you
restate it still differently? Many questions aim at the
variation of the problem by specified means, as going
back to the DEFINITION, using ANALOGY, GENERALIZATION,
SPECIALIZATION, DECOMPOSING AND RECOMBINING.

Still other questions suggest a trial to foresee the na-
ture of the solution we are striving to obtain: Is it pos-
sible to satisfy the condition? Is the condition sufficient
to determine the unknown? Or is it insufficient? Or re-
dundant? Or contradictory?

The questions and suggestions of our list do not men-
tion directly the bright idea; but, in fact, all are con-
cerned with it. Understanding the problem we prepare
for it, devising a plan we try to provoke it, having pro-
voked it we carry it through, looking back at the course
and the result of the solution we try to exploit it better.8

Puzzles. According to section 3, the questions and sug-
gestions of our list are independent of the subject-matter
and applicable to all kinds of problems. It is quite inter-
esting to test this assertion on various puzzles.

Take, for instance, the words

DRY OXTAIL IN REAR.

The problem is to find an “anagram,” that is, a rear-
rangement of the letters contained in the given words
into one word. It is interesting to observe that, when we
are solving this puzzle, several questions of our list are
pertinent and even stimulating.

What is the unknown? A word.

What are the data? The four words DRY OXTAIL
IN REAR.

8 Several points discussed in this article are more fully considered
in the author’s paper, dcta Psychologica, vol. 4 (1958) , pp- 113-170.
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What is the condition? The desired word has fifteen
letters, the letters contained in the four given words. It is
probably a not too unusual English word.

Draw a figure. It is quite useful to mark out fifteen

“blank spaces:

...............

Could you restate the problem? We have to find a
word containing, in some arrangement, the letters

AAEIIOY DLNRRRTX,.

This 15 certainly an equivalent restatement of the prob-
lem {(see AUXILIARY PROBLEM, 6). It may be an advan-
tageous restatement. Separating the vowels from the
consonants (this is important, the alphabetical order is

‘not) we see another aspect of the problem. Thus, we see

now that the desired word has seven syllables unless it
has some diphthongs.

If you cannot solve the proposed problem, try o solve
first some velated problem. A related problem is to form

“words with some of the given letters. We can certainly
. form short words of this kind. Then we try to find longer

and longer words. The more letters we use the nearer we
may come to the desired word.

Could you solve a part of the problem? The desired

- word is so long that it must have distinct parts, It is,
- probably, a compound word, or it is derived from some

other word by adding som~ usual ending. Which usual

- ending could it be?

Keep only a part of the condition and drop the other

* pari. We may try to think of a long word with, possibly,

@8 many as seven syllables and relatively few consonants,

. tontaining an X and a Y.
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The questions and suggestions of our list cannot work
magic. They cannot give us the solution of all possible
puzzles without any effort on our part. If the reader
wishes to find the word, he must keep on trying and
thinking about it. What the questions and suggestions
of the list can do is to “keep the ball rolling.” When,
discouraged by lack of success, we are inclined to drop
the problem, they may suggest to us a new trial, a new
aspect, a new variation of the problem, a new stimulus;
they may keep us thinking,

For another example se¢ DECOMPOSING AND RECOMBIN-
ING, 8.

Reductio ad absurdum and indirect proof are different
but related procedures.

Reductio ad absurdum shows the falsity of an assump-
tion by deriving from it a manifest absurdity. “Reduc-
tion to an absurdity” is a mathematical procedure but it
has some resemblance to irony which is the favorite
procedure of the satirist. Irony adopts, to all appearance,
a certain opinion and stresses it and overstresses it till it
leads to a manifest absurdity.

Indirect proof establishes the truth of an asserticn by
showing the falsity of the opposite assumpticn. Thus,
indirect proof has some resemblance to a politician’s
trick of establishing a candidate by demolishing the repu-
tation of his opponent.

Both “reductio ad absurdum” and indirect proof are
effective tools of discovery which present themselves natu-
rally to an intent mind. Nevertheless, they are disliked
by a few philosophers and many beginners, which is
understandable; satirical people and tricky politicians do
not appeal to everybody. We shall first illustrate the
effectiveness of both procedures by examples and discuss
objections against them afterwards.
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1. Reductio ad absurdum. Write numbers using each
of the ten digits exactly once so that the sum of the
numbers is exactly 1o00.

We may learn something by trying to solve this puzzie
whose statement demands some elucidation.

What is the unknown? A set of numbers; and by num-
bers we mean here, of course, ordinary integers.

W hat is given? The number 100.

What is the condition? The condition has two parts.
First, writing the desired set of numbers, we must use
each of the ten digits, o, 1, 2, 3, 4, 5, 6, 7, 8 and g, just
once. Second, the sum of all numbers in the set must
be 100.

Keep only @ part of the condition, drop the other part.
The hrst part alone is easy to satisfy. Take the set 1g,
28, 37, 46, 50; each figure occurs just once. But, of course,
the second part of the condition is not satisfied; the sum
of these numbers is 180, not 100. We could, however, do
better. “Try, try again.” Yes,

19+ 28+ 30+474+645+4 =90

The first part of the condition is satisfied, and the second
part 1s almost satisfied; we have gg instead of 100. Of

course, we can easily satisfy the second part if we drop
the first:

1g+ 28431+ 5+ 6+ 5+ 4 = 100.

- The first part is not satisfied: the figure 1 occurs twice,

and. 0 ot at all; the other figures are all right. “Try, try
again.”

Aiter a few unsuccessful trials, however, we may be led
to suspect that it is not possible to obtain 100 in the
manner required. Eventually the problem arises: Prove

that it is impossible to satisfy both parts of the proposed
condition at the same time.



164 Reductio ad Absurdum and Indirect Proof

Quite good students may find that this problem is
above their heads. Yet the answer is easy enough if we
have the right attitude. We have to examine the hypo-
thetical situation in which both parts of the condilion
are satisfied. '

We suspect that this situation cannot actually arise and
our suspicion, based on the experience of our unsuccess-
ful trials, has some foundation. Nevertheless, let us keep
an open mind and let us face the situation in which hy-
pothetically, supposedly, allegedly both parts of the con-
dition are satisfied. Thus, let us imagine a set ol num-
bers whose sum is 100. They must be numbers with one
or two figurcs. There are ten figures, and these ten hgures
must be all different, since each of the fgures, o, 1, 2,
. . . g should occur just once. Thus, the sum of all ten
figures must be

o+14+2+3+4+5 +6+7+8+9=45

Some of these figures denote units and others tens. It
takes a little sagacity to hit upon the idea that the sum
of the figures denoting tens may be of some importance.
In fact, let ¢t stand for this sum. Then the sum of the
remaining figures, denoting units, is 45 — &, Therefare,
the sum of all numbers in the set must be

10t + (45 — ) = 100.

We have here an equation to determine £. It is of the first
degree and gives

L= 55
9
Now, there is something that is definitely wrong. The
value of ¢ that we have found is pot an integer and ¢
should be, of course, an integer. Starting from the sup-
position that both parts of the proposed condition can
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be simultaneously satisfied, we have been led to a mani-
fest absurdity. How can we explain this? Our original
supposition must be wrong; both parts of the condition
cannot be satisfied at the same time. And so we have
attained our goal, we have succeeded in proving that the
two parts of the proposed condition are incompatible,

Qur reasoning is a typical “reductio ad absurdum.”

2. Remarks. Let us look back at the foregoing reason-
ing and understand its general trend.

We wish to prove that it is impossible to fulfill a cer-
tain condition, that is, that the situation in which all
parts of the condition are simultaneously satisfied can
never arise. But, if we have proved nothing yet, we have
to face the possibility that the situation could arise. Only
by lacirg squarely the hypothetical situation and exam-
ining it closely can we hope to perceive some definitely
wrong point in it. Aud we must lay our hand upon some
definitely wrong point if we wish to show conclusively
that the situation is impossible. Hence we can see that
the procedure that was successful in our example is rea-
sonable in general: We have 1o examine the hypothetical
situation in which all parts of the condition are satisfied,
although such a situation appears extremely unlikely.

The more experienced reader may see here another
point. The main step of our procedure consisted in set-
ting up an equation for {. Now, we could have arrived
at the same equation without suspecting that something
was wrong with the condition. If we wish to set up an
equation, we have to express in mathematical language
that all parts of the condition are satisfied, although we
do not know yet whether it is actually possible to satisfy
all these parts simultaneously.

Our procedure is “open-minded.” We may hope to find
the unknown satisfying the condition, or we may hope to
show that the condition cannot be satisfied. 1t matters
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little in one respect: the investigation, if it is well con-
ducted, starts in both cases in the same way, examining
the hypothetical situation in which the condition is
fulfilled, and shows only in its later course which hope
is justified.

Compare FIGURES, 2. Compare also pAPPUS; an analysis
which ends in disproving the proposed theorem, or in
showing that the proposed “problem to find” has no
solution, is actually a “reductio ad absurdum.”

8. Indirect proof. The prime numbers, or primes, are
the numbers 2, 3, 5, 7, 11, 18, 17, 1G, 23, 20> 31, 37: - + »
which cannot be resolved into smaller factors, although
they are greater than 1. {The last clause excludes the
number 1 which, obviously, cannot be resolved into
smaller factors, but has a different nature and should
noi be counted as a prime.) The primes are the “ulti-
mate elements” into which all integers (greater than 1)
can be decomposed. For instance,

630=2-3°3°5"7
is decomposed into a product of five primes.

Is the series of primes infinite or does it end some-
where? It is natural to suspect that the series of primes
never ends. If it ended somewhere, all integers could be
decomposed into a finite numbeyr of ultimate elements
and the world would appear “too poor” in a manner of
speaking. Thus arises the problem of proving the exist-
ence of an infinity of prime numbers.

This problem is very different from elementary mathe-
matical problems of the usual kind and appears at first
inaccessible. Yet, as we said, it is extremely unlikely that
there should be a last prime, say P. Why is it so unlikely?

Let us face squarely the unlikely situation in which,
hypothetically, supposedly, allegedly, there is a last prime
P. Then we could write down the complete series of
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primes 2, 3, 5, 7, 11, ... P. Why is this so unlikely? What
is wrong with it? Can we point out anything that is
definitely wrong? Indeed, we can. We can construct the
number

Q={2"3°5"7"11...P)+ 1

This number @ is greater than P and therefore, allegedly,
Q cannot be a prime. Consequently, Q must be divisible
by a prime. Now, all primes at our disposal are, sup-
posedly, the numbers 2, 3, 5. . . . P but Q, divided by any
of these numbers, leaves the rest 1; and so Q is not
divisible by any of the primes mentioned which are,
hypothetically, all the primes. Now, there is something
that is definitely wrong; Q must be either a prime or it
must be divisible by some prime. Starting from the sup-
position that there is a last prime P we have been led to
a manifest absurdity. How can we explain this? Our
original supposition must be wrong; there cannot be a
last prime P. And so we have succeeded in proving that
the series of prime numbers never ends.

Our proof is a typical indirect proof. (It is a famous
proof too, due to Euclid; see Proposition 20 of Book IX
of the Elements.}

We have established our theorem (that the series of
primes never ends) by disproving its contradictory op-
posite (that the series of primes ends somewhere) which
we have disproved by deducing from it a manifest ab-
surdity, Thus we have combined indirect proof with
“reductio ad absurdum”; this combination is also very
typical.

4. Objections. The procedures which we are studying
encountered considerable opposition. Many objections
have been raised which are, possibly, only various forms
of the same fundamental objection. We discuss here a
“practical” form of the objection, which is on our level,
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To find a not obvious proof is a considerable intel-
lectual achievement but to learn such a proof, or even to
understand it thoroughly costs also a certain amount of
mental effort. Naturally enough, we wish to retain some
benefit from our effort, and, of course, what we retain
in our memory should be true and correct and not false
or absurd.

Rut it seems difficult to retain something true from a
“reductio ad absurdum.” The procedure starts from a
false assumption and derives from it consequences which
are equally, but perhaps more visibly, false till it reaches
a last consequence which is manifestly false. 1f we do not
wish to store falsehoods in our memory we should forget
everything as quickly as possible which is, however, not
feasible because all points must be remembered sharply
and correctly during our study of the proof.

The objection to indirect proofs can be mow stated
very briefly. Listening to such a proof, we are obliged to
focus our attention all the time upon a false assumption
which we should forget and not upon the true theorem
which we should retain.

1f we wish to judge correctly of the merits of these
objections, we should distinguish between two uses of
the “reductio ad absurdum,” as a tool of research and as
a means of exposition, and make the same distinction
concerning the indirect proof.

It must be confessed that “reductio ad absurdum™ as a
means of exposition is not an unmixed blessing. Such a
“reductio,” especially if it is long, may become very pain-
ful indeed for the reader or listener. All the derivations
which we examine in succession are correct but all the
situations which we have to face are impossible. Even
the verbal expression may become tedious if it insists, as
it should, on emphasizing that everything is based on an
initial assumption; the words “hypothetically,” “sup-
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posedly,” “allegedly” must recur incessantly, or some
other device must be applied continually. We wish to
reject and forget the situation as impossible but we have
to retain and examine it as the basis for the next step,
and this inner discord may become unbearable in the
long run.

Yet it -would be foolish to repudiate “reductio ad
absurdum” as a tool of discovery. It may present itself
naturally and bring a decision when all other means
seem to be exhausted as the foregoing examples may

1 s

. show.

We need some experience to perceive that there is no
essential opposition between our two contentions. Ex-
perience shows that usually there is little difficulty in
converting an indirect proof into a direct proof, or in
rearranging a proof found by a long “reductio ad ab-
surdum” into a more pleasant form from which the
“reductio ad absurdum’ may even completely disappear
{or, after due preparation, it may be compressed into
a few striking sentences).

In short, if we wish to make full use of our capacities,
we should be familiar both with “reductio ad absurdum”
and with indirect proof. When, however, we have suc-
ceeded in deriving a result by either of these methods we
should not fail to look back at the solution and ask: Can
you derive the result differently?

Let us illustrate by examples what we have said.

5. Rearranging a reductio ad absurdum. We look back
at the reasoning presented under 1. The reductio ad
absurdum started from a situation which, eventually,
turned out to be impossible. Let us however carve out a
part of the argument which is independent of the initial
false assumption and contains positive information. Re-
considering what we have done, we may perceive that
this much is doubtless true: If a set of numbers with one
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or two digits is written so that each of the ten figures
occurs just once, then the sum of the set is of the form

106+ (45 — £) = 9 (£ + 5)-

Thus, this sum is divisible by 9. The proposed puzzle
demands however that this sum should be 100, Is this
possible? No, it is not, since 100 is not divisible by g.

The “reductio ad absurdum” which led to the discov-
ery of the argument vanished from our new presentation.

By the way, a reader acquainted with the procedure
of “casting out nines” can see now the whole argument
at a glance.

6. Converting an indirect proof. We look back at the
reasoning presented under 3. Reconsidering carefully
what we have done, we may find elements of the argu-
ment which are independent of any false assumption, yet
the best clue comes from a reconsideration of the mean-
ing of the original problem itself.

What do we mean by saying that the series of primes
never ends? Evidently, just this: when we have ascer-
tained any finite set of primes as 2, §, 5, 7. 11, . - - P,
where P is the last prime hitherto found, there is always
one more prime. Thus, what must we do to prove the
existence of an infinity of primes? We have to point out
a way of finding a prime different from all primes hith-
erto found. Thus, our “problem to prove” is in fact Te-
duced to a “problem to find”": Being given the primes
2, % 5 ... P, find a new prime N different from all the
given primes.

Having restated our original problem in this new form,
we have taken the main step. It is relatively easy now to
see how to use the essential parts of our former argu-
ment for the new purpose. In fact, the number

Q=1(2357"11...P)+1
is certainly divisible by a prime. Let us take—this is the
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jdea—any prime divisor of @ (for instance, the smallest
one) for N. {Of course, if Q happens to be a prime, then
N = Q.} Obviously, Q divided by any of the primes ¢, 3,
Beooo P leaves the remainder 1 and, therefore, none of
these numbers can be N which is a divisor of Q. But that
is all we need: N is a prime, and different from all
hitherto found primes 2, g, 5, 7, 11, . . . P.

This proof gives a definite procedure of prolonging
again and again the series of primes, without limit. Noth-
ing is indirect in it, no impossibie situation needs to be
considered. Yet, fundamentally, it is the same as our
former indirect proof which we have succeeded in con-
verting.

Redundant. See CONDITION.

Routine problem may be called the problem to solve
the equation x2 — gx 4 2 = o if the solution of the gen-
eral quadratic equation was explained and illustrated
before so that the student has nothing to do but to sub-
stitute the numbers —g and 2 for certain letters which
appear in the general solution. Even if the quadratic

- equation was not solved generally in “letters” but half

a dozen similar quadratic equations with numerical co-
efficients were solved just before, the problem should

- be called a “routine problem.” In general, 2 problem is

a “routine problem™ if it can be solved either by substi-
tuting special data into a formerly solved general prob-
lem, or by following step by step, without any trace of

~ originality, some well-worn conspicuous example. Setting

a routine problem, the teacher thrusts under the nose of

. the student an immediate and decisive answer to the

question: Do you know a related problem? Thus, the
student needs nothing but a little care and patience in
following a cut-and-dried precept, and he has no oppor-
tunity to use his judgment or his inventive faculties.
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Routine problems, even many routine problems, may
be necessary in teaching mathematics but to make the
students do no other kind is inexcusable. Teaching the
mechanical performance of routine mathematical opera-
tions and nothing else is well under the level of the
cookbook because kitchen recipes do leave something to
the imagination and judgment of the cook but mathe-
matical recipes do not,

Rules of discovery. The first rule of discovery is to
have brains and good luck. The second rule of discovery
is to sit tight and wait till you get a bright idea.

It may be good to be reminded somewhat rudely that
certain aspirations are hopeless. Infallible rules of dis-
covery leading to the solution of all possible mathemati-
cal problems would be more desirable than the philoso-
phers’ stone, vainly sought by the alchemists. Such rules
would work magic; but there is no such thing as magic.
To find unfailing rules applicable to all sorts of prob-
lerus is an old philosophical dream; but this dream will
never be more than a dream.

A reasonable sort of heuristic cannot aim at unfailing
rules; but it may endeavor to study procedures (mental
operations, moves, steps) which are typically useful in
solving problems. Such procedures are practiced by every
sane person sufficiently interested in his problem. They
are hinted by certain stereotyped questions and sugges-
tions which intelligent people put to themselves and in-
telligent teachers to their students. A collection of such
questions and suggestions, stated with sufficient general-
ity and neatly ordered, may be less desirable than the
philosophers’ stone but can be provided. The list we
study provides such a collection.

Rules of style. The firs: rule of style is to have some-
thing to say. The second rule of style is to control your-
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self when, by chance, you have two things to say; say first
one, then the other, not both at the same time.

Rules of teaching. The first rule of teaching is to know
what you are supposed to teach. The second rule of
teaching is to know a little more than what you are

- supposed to teach.

First things come first. The author of this book does
not think that all rules of conduct for teachers are com-
pletely useless; otherwise, he would not have dared to
write a whole book about the conduct of teachers and
students. Yet it should not be forgotten that a teacher of
mathematics should know some mathematics, and that a
teacher wishing to impart the right attitude of mind
toward problems to his students should have acquired

that attitude himself,

Separate the various parts of the condition, Qur first
duty is to understand the problem. Having understood
the problem as a whole, we go into detail. We consider

. its principal parts, the unknown, the data, the condition,

each by itself. When we have these parts well in mind
but no particularly helpful idea has yetr occurred to us,

. we go into further detail. We consider the various data,
~ each datum by itself. Having understood the condition

as a whole, we separale its various paris, and we consider
each part by itself.

We see now the role of the suggestion that we have to
discuss here. It tends to provoke a step that we have to
take when we are trying to see the problem distinctly
and have to go into finer and finer detail. It is a step in
DECOMPOSING AND RECOMBINING.

Separate the various parts of the condition. Can you
write them down? We often have opportunity to ask this
question when we are SETTING UP EQUATIONS,
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Setting up equations is like translation from one lan-
guage into another (NOTATION, 1) . This comparison, used
by Newton in his Arithmetica Universalis, may help to
clarify the nature of certain difficulties often felt both
by students and by teachers.

1. To set up equations means to express in mathemati-
cal symbols a condition that is stated in words; it is
translation from ordinary language into the language of
mathematical formulas. The difficulties which we may
bave in setting up equations are difficulties of translation.

In order to translate a sentence from English into
French two things are necessary. First, we must under-
stand thoroughly the English sentence. Second, we must
be familiar with the forms of expression pecuiiar to the
French language. The situation is very similar when we
attempt to express in mathematical symbols a condition
proposed in words. First, we must understand thoroughly
the condition. Second, we must be familiar with the
forms of mathematical expression.

An English sentence is relatively easy to translate into
French if it can be translated word for word. But there
are English idioms which cannot ke translated into
French word for word. If our sentence contains such
idioms, the translation becomes difficult; we have to pay
less attention to the separate words, and more attention
to the whole meaning; before translating the sentence,
we may have to rearrange it.

It is very much the same in setting up equations. In
easy cases, the verbal statement splits almost automati-
cally into successive parts, each of which can be immedi-
ately written down in mathematical symbols. In more
difficult cases, the condition has parts which cannot be
immediately translated into mathematical symbols. If
this is so, we must pay less attention to the verbal state-
ment, and concentrate more upon the meaning. Before
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we start writing formulas, we may have to rearrange the

condition, and we should keep an eye on the resources of
mathematical notation while doing so.

In all cases, easy or difficult, we have to understand the
condition, to separate the various parts of the condition,
and to ask: Can you write them down? In easy cases, we
succeed without hesitation in dividing the condition into
parts that can be written down in mathematical symbols;
in difficult cases, the appropriate division of the condi-
tion is less obvious.

The foregoing explanation should be read again after
the study of the following examples. '

2. Find two quantities whose sum is 48 and whose
product is 1296.

We divide the page by a vertical line. On one side, we
write the verbal statement split into appropriate parts.
On the other side, we write algebraic signs, opposite to
the corresponding part of the verbal statement. The orig-
inal is on the left, the translation into symbels on the
right.

Stating the problem
in English in algebraic language
Find two guantities X, y
whose sum is 48 and x+y=18
whose product is 1296 xy = 1296.

In this case, the verbal statement splits almost auto-
matically into successive parts, each of which can be
immediately written down in mathematical symbols.

3. Find the breadth and the height of a right prism

“with square base, being given the volume, 64 cu. in., and

the area of the surface, 102 5q. in.
What are the unknowns? The side of the base, say x,
and the altitude of the prism, say y.
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What are the data? The volume, 63, and the area, 1o02.

What is the condition? The prism whose base is a
square with side x and whose altitude is y must have the
volume 63 and the area 102.

Separate the various parts of the condition. There are
two parts, one concerned with the volume, the other with
the area.

We can scarcely hesitate in dividing the whole condi-
tion just in these two parts; but we cannot write down
these parts “immediately.” We must know how to calcu-
late the volume and the various parts of the area. Yet, if
we know that much geometry, we can easily restate both
parts of the condition so that the translation into equa-
tions is feasible. We write on the left hand side of the
page an essentially rearranged and expanded statement
of the problem, ready for translation into algebraic

language.

Of a right prism with

square base

find the side of the base x
and the altitude. ¥y
First. The volume is given. 63
The area of the base which

is a square with side x x2
and the altitude y
determine the volume

which is their product. x2y = 63
Second. The area of the

surface is given. 102
The surface consists of two

squares with side x 2x2
and of fourrectangles, each

with base x and altitude vy, 4xy
whose sum is the area. 2x2 -+ 4xy = r02.

4. Being given the equation of a straight line and the
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coordinates of a point, find the point which is symmetri-
cal to the given point with respect to the given straight
hine.

This is a problem of plane analytic geometry.

What ts the unknown? A point, with coordinates, say,
£:9.

What is given? The equation of a straight line, say y =
mx + n, and a point with coordinates, say, a, b.

What is the condition? The points (a, &) and (p, g}
are symmetrical to each other with respect to the line
y = mx + .

We now reach the essential difficulty which is to divide
the condition into parts each of which can be expressed
in the language of analytic geometry. The nature of this
difficulty must be well understood. A decomposition of
the condition into parts may be logically unobjection-
able and nevertheless useless. What we need here is a
decomposition into parts which are fit for analytic ex-
pression, In order to find such a decomposition we must
go back to the definition of symmetry, but keep an eye
on the resources of analytic geometry. What is meant by
symmetry with respect to a straight line? What geometric
relations can we express simply in analytic geometry? We
concentrate upon the first question, but we should not
forget the second. Thus, eventually, we may find the de-
composition which we are going to state,

The given point {a, b)
and the point required ()
are so related that

first, the line joining them
is perpendicular to the
given line, and

second, the midpoint of
the line joining them lies b+ g
on the given line. 2
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Signs of progress. As Columbus and his companions
sailed westward across an unknown ocean they were
cheered whenever they saw birds. They regarded a bird
as a favorable sign, indicating the nearness of land. But
in this they were repeatedly disappointed. They watched
for other signs too. They thought that floating seaweed
or low banks of cloud might indicate land, but they were
again disappointed. One day, however, the signs multi-
plied. On Thursday, the 11th of October, 1492, “they saw
sandpipers, and a green reed near the ship. Those of the
caravel Pinis saw a cane and a pole, and they took up
another small pole which appeared to have been worked
by iren; also another bit of cane, a land-plant, and a
small board. The crew of the caravel Nifia also saw signs
of land, and a small branch covered with berries. Every-
one breathed afresh and rejoiced at these signs.” And in
fact the next day they sighted land, the first island of a
New World.

Our undertaking may be important or unimportant,
our problem of any kind—when we are working in-
tensely, we watch eagerly for signs of progress as Co-
lumbus and his companions watched for signs of ap-
proaching land. We shall discuss a few examples in order
to understand what can be reasonably regarded as a sign
of approaching the solution.

L. Examples. 1 have a chess problem. I have to mate
the black king in, say, two moves. On the chesshoard
there is 2 white knight, quite a distance from the black
King, that is apparently superfluous. What is it good for?
J am obliged to leave this question unanswered at first.
Yet after various trials, I hit upon a new move and ob-
serve that it would bring that apparently superfiuous
white knight into play. This observation gives me a new
hope. I regard it as a favorable sign: that new move has
some chance to be the right one. Why?
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In a well-constructed chess problem there is no super-
fluous piece. Therefore, we have to take into account all
chessmen on the beard; we have to use afl the dato. The
correct solution does certainly use all the pieces, even
that apparently superfluous white knight. In this last
respect, the new move that I contemplate agrees with the
correct move that I am supposed to find. The new move
Jooks like the correct move; it might be the correct
move.

It is interesting to consider a similar sitnation in a
mathematical problem. My task is to express the area of a
triangle in terms of its three sides, a, b, and ¢. I have
already made some sort of plan. I know, more or less
clearly, which geometrical connections I have to take
into account and what sort of calculations I have to per-
form. Yet I am not quite sure whether my plan will work.
If now, proceeding along the line prescribed by my plan,
I observe that the quantity

Vbi+e—a

enters into the expression of the area I am about to con-
struct, I have good reason to be cheered. Why?

In fact, it must be taken into account that the sum of
any two sides of a triangle is greater than the third side.
This involves a certain restriction, The given lengths, o,
b, and ¢ cannot be quite arbitrary; for instance, b+ ¢
must be greater than a. This is an essential part of the
condition, and we should wuse the wheole condition. 1f
b+ ¢ is not greater than a the formula I seek is bound
to become illusory. Now, the square root displayed above
becomes imaginary if &+ ¢ — e is negative—that is, if
b+ ¢ is less than a—and so the square root becomes unfit
to represent a real quantity under just those circum-
stances under which the desired expression is bound to
become illusory. Thus my formula, into which that
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square root enters, has an important property in com-
mon with the true formula for the area. My formula
looks like the true formula; it might be the true for-
mula.

Here is one more example. Some time ago, I wished to
prove a theorem in solid geometry. Without much
trouble I found a first remark that appeared to be per-
tinent; but then I got stuck. Something was missing to
finish the proof. When 1 gave up that day I had a much
clearer notion than at the outset how the proof should
look, how the gap should be filled; but I was not able to
fill it. 'The next day, after a good night’s rest, I looked
again into the question and soon hit upon an analogous
theorem in plane geometry. In a flash I was convinced
that now I had got hold of the solution and I had, 1
think, good reason too to be convinced. Why?

In fact, analogy is a great guide. The solution of 2
problem in solid geometry often depends on an anal-
ogous problem in plane geometry (see ANALOGY, 3-7).
Thus, in my case, there was a chance from the outset that
the desired proof would use as a lemma some theorem
of plane geometry of the kind which actually came to my
mind. “This theorem locks like the lemima I need; it
might be the lemma I need”—such was my reasoning.

If Golumbus and his men had taken the trouble to
reasom'cxplicitly, they would have reasoned in some simi-
lar way. They knew how the sea looks near the shore.
They knew that, more often than on the open sea, there
are birds in the air, coming from the land, and objects
floating in the water, detached from the seashore. Many
of the men must have observed such things when from
former voyages they had returned to their home port.
The day before that memorable date on which they
sighted the island of San Salvador, as the floating objects
in the water became so frequent, they thought: “It looks
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as if we were approaching some land; we may be ap-
proaching some Jand” and “everyone breathed afresh and

rejoiced at these signs.”

2. Heuristic character of signs of progress. Let us insist
upon a point which is perhaps already clear to everyone;
but it is very important and, therefore, it should be com-
pletely clear.

The type of reasoning illustrated by the foregoing ex-
amples deserves to be noticed and taken into account
seriously, although it yields only a plausible indication
and not an unfailing certainty. Let us restate pedan-
tically, at full length, in rather unnatural detail, one of
these reasonings:

If we are approaching land, we often see birds.
Now we see birds.
Therefore, probably, we are approaching land.

Without the word “probably” the conclusion would
be an outright fallacy. In fact, Columbus and his com-
panions saw birds many times but were disappointed
later. Just once came the day on which they saw sand-
pipers followed by the day of discovery.

With the word “probably” the conclusion is reason-
able and natural but by no means a proof, a demonstra-
tive conclusion; it is only an indication, a heuristic
suggestion. It would be a great mistake to forget that
such a conclusion is only probable, and to regard it as
certain. But to disregard such conclusions entirely would
be a still greater mistake. If you take a heuristic conclu-
sion as certain, you may be fooled and disappointed; but
if you neglect henristic conclusions altogether you will
make no progress at all. The most important signs of
progress are heuristic. Should we trust them? Should we
follow them? Follow, but keep your eyes open. Trust but
look. And never renounce your judgment.
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g. Clearly expressible signs. We can look at the fore-
going examples from another point of view.

In one of these examples, we regarded as a favorable
sign that we succeeded in bringing inte play a datum not
used before (the white knight) . We were quite right to
so regard it. In fact, to solve a problem is, essentially, to
find the connection between the data and the unknown.
Moreover we should, at least in wellstated problems, use
all the data, connect each of them with the unknown.
Thus, bringing one more datum into play is quite prop-
erly felt as progress, as a step forward.

In another example, we regarded as a favorable sign
that an essential clause of the condition was appropri-
ately taken into account by our formula. We were quite
right to so regard it. In fact, we should use the whole
condition. Thus, taking into account one more clause of
the condition is justly felt as progress, as a move in the
right direction.

In still another example, we regarded as a favorable
sign the emergence of a simpler analogous problem. This
also is justified. Indeed, analogy is one of the main
sources of invention. If other means fail, we should try
to imagine an analogous problem. Therefore, it such a
problem emerges spontaneously, by its own accord, we
naturally feel elated; we feel that we are approaching the
solution.

After these examples, we can now easily grasp the gen-
eral idea. There are certain mental operations typically
useful in solving problems. (The most usual operations
of this kind are listed in this book.) If such a typical
operation succeeds (if one more datum is connected with
the unknown—one more clause of the condition is taken
into account—a simpler analogous problem is intro-
duced) its success is felt as a sign of progress. Having
understood this essential point, we can express with some
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clearness the nature of still other signs of progress. All
we have to do is to read down our list and look at the
various questions and suggestions from our newly ac.
quired point of view.

Thus, understanding clearly the nature of the un-
known means progress. Clearly disposing the various data
so that we can easily recall any one also means progress.
Visualizing vividly the condition as a whole may mean an
essential advance; and separating the condition into ap-
propriate parts may be an important step forward. When
we have found a figure that we can easily imagine, or a
notation that we can easily retain, we can reasonably be-
lieve that we have made some progress. Recalling a
problem related to ours and solved before may be a de-
cisive move in the right direction.

And so on, and so forth. To each mental operation
clearly conceived corresponds a certain sign clearly ex-
pressible. Our list, appropriately read, lists also signs of
progress.

Now, the questions and suggestions of our list are
simple, obvious, just plain common sense. This has been
said repeatedly and the same can be said of the con-
nected signs of progress we discuss here. To read such
signs no occult science is needed, only a little common
sense and, of course, a litile experience.

4. Less clearly expressible signs. When we work in-
tently, we feel keenly the pace of our progress: when it is
rapid we are elated; when it is slow we are depressed. We
feel such differences quite clearly without being able to
point out any distinct sign. Moods, feelings, general
aspects of the situation serve to indicate our progress.
They are not easy to express. “It looks good to me,” or
“It is not so good,” say the unsophisticated. More sophis-
ticated people express themselves with some nuance:
“This is a well-balanced plan,” or “No, something is still
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lacking and that spoils the harmony.” Yet behind primi-
tive or vague expressions there is an unmistakable fecling
which we follow with confidence and which leads us
frequently in the right direction, If such feeling is very
strong and emerges suddenly, we speak of inspiration.
People usually cannot doubt their inspirations and are
sometimes fooled by them. In fact, we should treat guid-
ing feelings and inspirations just as we treat the more
clearly expressible signs of progress which we have con-
sidered before. Trust, but keep your eyes open.

Always follow your inspiration—with a grain of doubt.

[What is the nature of those guiding feclings? Is there
some less vague meaning behind words of such aesthetic
nuances as ‘‘well-balanced,” or *“harmonious”? These
questions may be more speculative than practical, but
the present context indicates answers which perhaps de-
serve to be stated: Since the more clearly expressible
signs of progress are connected with the success or failure
of certain rather definite mental operations, we may
suspect that our less clearly expressible guiding feelings
may be similarly connected with other, more ohscure,
mental activities—perhaps with activities whose nature
is more “psychological” and less “logical.”]

5. How signs help. 1 have a plan. 1 see pretty clearly
where I should begin and which steps I should take first.
Yet I do not quite see the lay-out of the road farther on;
I am not quite certain that my plan will work; and, in
any case, I have still a long way to go. Therefore, I start
out cautiously in the direction indicated by my plan and
keep a lookout for signs of progress. If the signs are rare
or indistinct, I become more hesitant. And if for a long
time they fail to appear altogether, I may lose courage,
turn back, and try another road. On the other hand, if
the signs become more frequent as I proceed, if they
multiply, my hesitation fades, my spirits rise, and 1 move
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with increasing confidence, just as Columbus and his
companions did before sighting the island of San Sal-
vador.

Signs may guide our acts. Their absence may warn us
of 2 blind alley and save us time and useless exertion;
their presence may cause us to concentrate our effort
upon the right spot.

Yet signs may also be deceptive. I once abandoned a
certain path for lack of signs, but a man who came after
me and followed that path a little farther made an im-
portant discovery—to my great annoyance and long-last-
ing regret. He not only had more perseverance than 1
did but he also read correctly a certain sign which I had
failed to notice. Again, I may follow a road cheerfully,
encouraged by favorable signs, and run against an un-
suspected and insurmountable obstacle.

Yes, signs may misguide us in any single case, but they
guide us right in the majority of them. A hunter may
misinterpret now and then the traces of his game but he
must be right on the average, otherwise he could not
make a Living by hunting,

It takes experience to interpret the signs correctly.
Some of Columbus’s companions certainly knew by ex-
perience how the sea looks near the shore and so they
were able to read the signs which suggested that they
were approaching land. The expert knows by experience
how the situation looks and feels when the solution is
near and so he is able to read the signs which indicate
that he is approaching it. The expert knows more signs
than the inexperienced, and he knows them better; his
main advantage may consist in such knowledge. An ex-
pert hunter notices traces of game and appraises even
their freshness or staleness where the inexperienced one
is unable to see anything.

The main advantage of the exceptionally talented may
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consist in a sort of extraordinary mental sensibility. With
exquisite sensibility, he feels subtle signs of progress or
notices their absence where the less talented are unable
to perceive a difference.

[6. Heuristic syllogism. In section 2 we came across a
mode of heuristic reasoning that deserves further consid-
eration and a technical term. We begin by restating that
reasoning in the following form:

If we are approaching land, we often see birds.
Now we see birds.

Therefore, it becomes more credible that we are ap-
proaching land.

The two statements above the horizontal line may be
called the premises, the statement under the line, the
concluston. And the whole pattern of reasoning may be
termed a heuristic syllogism.

The premises are stated here in the same form as in
section 2, but the conclusion is more carefully worded.
An essential circumstance is better emphasized. Colum-
bus and his men conjectured from the beginning that
they would eventually find land sailing westward; and
they must have given some credence to this conjecture,
otherwise they would not have started out at all. As they
proceeded, they related every incident, major or minor,
to their dominating question: “Are we approaching
land?” Their confidence rose and fell as events occurred
or failed to occur, and each man’s beliefs fluctuated more
or less differently according to his background and char-
acter. The whole dramatic tension of the voyage 1s due to
such fluctuations of confidence.

The heuristic syllogism quoted exhibits a reasonable
ground for a change in the level of confidence. To occa-
sion such changes is the essential role of this kind of
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reasoning and this point is better expressed by the word-
ing given here than by the one in section 2.

‘The general pattern suggested by our example can be
exhibited thus:

If 4 is true, then B is alse true, as we know.
Now, it turns out that B is true.

Therefore, A becomes more credible.

Still shorter:
If 4 then B
B true

A more credible

In this schematic statement the horizontal line stands for
the word “therefore” and expresses the implication, the
essential link between the premises and the conclusion.]

[7. Nature of plausible reasoning. In this little book
we are discussing a philosophical question. We discuss it
as practically and informally and as far from high-brow
modes of expression as we can, but nevertheless our
subject is philosophical. It is concerned with the nature
of heuristic reasoning and, by extension, with a kind of
reasoning which is nondemonstrative although important
and which we shall call, for lack of a better term, plau-
stble reasoning,

The signs that convince the inventor that his idea is
good, the indications that guide us in our everyday
affairs, the circumstantial evidence of the lawyer, the in-
ductive evidence of the scientist, statistical evidence
invoked in many and diverse subjects—all these kinds of
evidence agree in two essential points. First, they do not
have the certainty of a strict demonstration. Second, they
are useful in acquiring essentially new knowledge, and
even indispensable to any not purely mathematical or
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logical knowledge, to any knowledge concerned with the
physical world. We could call the reasoning that under-
lies this kind of evidence “heuristic reasoning™ or “induc-
tive reasoning” or (if we wish to avoid stretching the
meaning of existing terms) “plausible reasoning.” We
accept here the last term.

The heuristic syllogism introduced in the foregoing
may be regarded as the simplest and most widespread
pattern of plausible reasoning. It reminds us of a classi-
cal pattern of demonstrative reasoning, of the so-called
“modus tollens of hypothetical syllogism.” We exhibit
here both patterns side by side:

Demonstrative Heuristic
1f A chen B If A then B
B false B true
A false A mare credible

The comparison of these patterns may be instructive. It
may grant us ap insight, not easily obtainable elsewhere,
into the nature of plausible (heuristic, inductive) rea-
soning,

Both patterns have the same first premise:

If A then B.
They differ in the second premise. The statements:
B false B true

are exactly opposite to each other but they are of “simi-
lar logical nature,” they are on the same “logical level.”
The great difference arises after the premises. The con-
clusions

A false A more credible

are on different logical levels and their relations to their
respective premises are of a different logical nature.
The conclusion of the demonstrative syllogism is of the
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same logical nature as the premises. Moreover, this con-
clusion is fully expressed and is fully supported by the
premises. If my neighbor and I agree to accept the prem-
ises, we cannot reasonably disagree about accepting also
the conclusion, however different our tastes or other
convictions may be.

The conclusion of the heuristic syllogism differs from
the premises in its logical nature; it is more vague, not so
sharp, less fully expressed. This conclusion is comparable
to a iorce, has direction and magnitude. It pushes us in a
certain direction: 4 becomes more credible. The conclu-
sion also has a certain strength: 4 may become much
mare credible, or just a little more credible. The conclu-
sion is not fully expressed and is not fully supported by
the premises. The direction is expressed and is implied
by the premises, the magnitude is not. For any reasenable
person, the premises involve that 4 becomes more cred-
ible {certainly not less credible). Yet my neighbor and I
can honestly disagree how much more credible 4 be-
comes, since our temperaments, our backgrounds, and
our unstated reasons may be different.

In the demonstrative syllogism the premises constitute
a full basis on which the conclusion rests. If both prem-
ises stand, the conclusion stands too. If we receive some
new information that does not change our belief in the
premises, it cannot change our belief in the conclusion.

In the heuristic syllogism the premises constitute only
one part of the basis on which the conclusion rests, the
fully expressed, the “visible” part of the basis; there is an
unexpressed, invisible part, formed by something else, by
inarticulate feelings perhaps, or by unstated reasons. In
fact, it can happen that we receive some new information
that leaves our belief in both premises completely intact,
but influences the trust we put in 4 in a way just oppo-
site to that expressed in the conclusion. To find 4 more
plausible on the ground of the premises of our heuristic
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syllogism is only reasonable. Yet tomorrow I may find
grounds, not interfering at all with these premises, that
make A appear less plausible, or even definitively refute
it. The conclusion may be shaken and even overturned
completely by commotions in the invisible parts of its
foundation, aithough the premises, the visible part, stand
quite firm,

These remarks seem to make somewhat more under-
standable the nature of heuristic, inductive, and other
sorts of not demonstrative plausible reasoning, which
appear so baffling and elusive when approached from the
point of view of purely demonstrative logic. Many more
concrete examples, the consideration of other kinds of
heuristic syllogism, and an investigation of the concept
of probability and other allied concepts seem to be nec-
essary to complete the approach here chosen; ¢f. the
author’s Mathematics and Plausible Reasoning.]

Heuristic reasons are important although they prove
nothing. To clarify our heuristic reasons is also impor-
tant although behind any reason clarified there are many
others that remain obscure and are perhaps still more
important.

Specialization is passing from the consideration of a
given set of objects to that of a smaller set, or of just one
object, contained in the given set. Specialization is often
useful in the solution of problems.

1. Example. In a triangle, let r be the radins of the
inscribed circle, R the radius of the circumscribed circle,
and H the longest altitude. Then

r+R=H.

We have to prove (or disprove) this theorem?; we
have a “problem to prove.”

9 The American Mathematical Monthly, vol. o (1948), p. 124 and
vol. 51 (1944), PP- 234-236.
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The proposed theorem is of an unusual sort. We can
scarcely remember any theorem about triangles with a
similar conclusion. If nothing else occurs to us, we may
test some special case of this unfamiliar assertion. Now,

the best known special triangle is the equilateral triangle
for which

=4 r-2H
3 3
so that, in this case, the assertion is correct.

If no other idea presents itself, we may test the more
extended special case of isosceles triangles. The form of
an isosceles triangle varies with the angle at the vertex
and there are two extreme (or limiting) cases, the one in
which the angle at the vertex becomes 0°, and the other
in which it becomes 180°, In the first extreme case the
base of the isosceles triangle vanishes and visibly

r=o0 R=£H
2

thus, the assertion is verified. In the second limiting case,
however, all three heights vanish and

r=20 R= = H=o,

The assertion is not verified. We have proved that the
proposed theorem is false, and so we have solved our
problem.

By the way, it is clear that the assertion is also false
for very flat isosceles triangles whose angle at the vertex
is nearly 180° so that we may “officially” disregard the
extreme cases whose consideration may appear as not
guite “orthodox.”

2. “L’exception confirme la régle.” “The exception
proves the rule.” We must take this widely known saying
as a joke, laughing at the laxity of a certain sort of logic.
If we take matters seriously, one exception is enough, of
course, to refute irrefragably any would-be rule or gen.
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eral statement. ‘The most usual and, in some respects, the
best method to refute such a statement consists precisely
in exhibiting an object that does not comply with it;
such an object is called a counter<xample by certain
writers.

The allegedly general statement is concerned with a
certain set of objects; in order to refute the statement we
specialize, we pick out from the set an object that does
not comply with it. The foregoing example (under 1)
shows how it is done. We may examine at first any sim-
ple special case, that is, any object chosen more or less at
random which we can easily test. If the test shows that
the case is not in accordance with the general statement,
the statement is refuted and our task finished. If, how-
ever, the object examined complies with the statement
we may possibly derive some hint from its examination.
We may receive the impression that the statement could
be true, after all, and some suggestion in which direction
we should seek the proof. Or, we may receive, as in our
example under 1, some suggestion in which direction we
should seek the counter-example, that is, which other
special cases should we test. We may modily the case we
have just examined, vary it, investigate some more ex-
tended special case, look around for extreme cases, as
exemplified under 1.

Extreme cases are particularly instructive. If a general
statement is supposed to apply to all mammals it must
apply even to such an unusuval mammal as the whale.
Let us not forget this extreme case of the whale. Exam-
ining it, we may refute the general statement; there is a
good chance for that, since such extreme cases are apt to
be overlooked by the inventors of generalizations. If,
however, we find that the general statement is verified
even in the extreme case, the inductive evidence derived
from this verification will be strong, just because the
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prospect of refutation was strong. Thus, we are tempted
to reshape the saying from which we started: “Prospective
exceptions test the rule.”

3. Example. Given the speeds of two ships and their
positions at a certain moment; each ship steers a recti-
linear course with constant speed. Find the distance of
the two ships when they are nearest to each other.

What is the unknown? The shortest distance between
two moving bodies. The bodies have to be considered as
material points,

What are the data? 'The initial positions of the moving
material points, and the speed of each. These speeds are
constant in amount and direction.

o’

A ———

P A

FIG. 19

What is the condition? The distance has to be ascer-
tained when it is the shortest, that is, at the moment
when the two moving points (ships) are nearest to each
other,

Draw a figure. Introduce suitable notation. In Fig. 19,
the points 4 and B mark the given initial positions of
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the two ships. The directed line-segments (vectors) AP
and BQ represent the given speeds so that the first ship
proceeds along the straight line through the points 4 and
P, and covers the distance AP in unit time. The second
ship travels similarly along the straight line BQ.

What ts the unknown? The shortest distance of the two
ships, the one traveling along AP and the other along
BQ.

It is clear by now what we should find; yet, if we wish
to use only elementary means, we may be still in the dark
how we should find it. The problem is not too easy and
its dithculty has some peculiar nuance which we may try
to express by saying that “there is too much variety.” The
initial positions, 4 and B, and the speeds, AP and BQ,
can be given in various ways; in fact, the four points 4,
B, P, ) may be chosen arbitrarily. Now, whatever the
data may be, the required solution must apply and we do
not sce yet how to fit the same solution to all these pos-
sibilities. Out of such feeling of “too much variety” this
question and answer may eventually emerge:

Could you imagine a more accessible related problem?
A more special problem? Of course, there is the extreme
special case in which one of the speeds vanishes. Yes, the
ship in B may lay at anchor,  may coincide with B.
The shortest distance from the ship at rest to the moving
ship is the perpendicular to the straight line along which
the latter moves.

4. If the foregoing idea emerges with the premonition
that there is more ahead and with the feeling that that
extreme special case (which could appear as too simple
to be relevant) has some role to play—then it is a bright
idea indeed.

Here is a problem related to yours, that specialized
problem you just solved. Could you use it? Could you use
its result? Should you introduce some auxiliary element
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in order to make its use possible? It should be used, but
how? How could the result of the case in which B is at
rest be used in the case in which B is moving? Rest is a
special case of motion. And motion is relative—and,
therefore, whatever the given velocity of B may be I can
consider B as being at rest! Here is the idea more clearly:
If I impart to the whole system, consisting of both ships,
the same uniform motion, the relative positions do not
change, the relative distances remain the same, and so
does especiaily the shortest relative distance of the two
ships required by the problem. Now, I can impart a
motion that reduces the speed of one of the ships to zero,

FIiG. 20

and so reduces the general case of the problem to the
special case just solved, Let me add a velocity, opposite
to BQ but of the same amount, both t0 BQ and to AP.
This is the auxiliary element that makes the use of the
special result possible,

See Fig. 20 for the construction of the shortest distance,
BS.
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5. The foregoing solution (under 3, 4) has a logical
pattern that deserves to be analyzed and remembered.

In order to solve our original problem (under g, first
lines) we have solved first another problem which we
may call appropriately the auxiliary problem (under 3,
last lines) . This auxiliary problem is a special case of the
original problem (the extreme special case in which one
of the two ships is at rest). The original problem was
proposed, the auxiliary problem invented in the course
of the solution. The original problem looked hard, the
solution of the auxiliary problem was immediate. The
auxiliary problem was, as a special case, in fact much less
ambitious than the original problem. How is it then pos-
sible that we were able to solve the original problem on
the basis of the auxiliary problem? Because in reducing
the original problem to the auxiliary problem, we added
a substantial supplementary remark (on relativity of
motion) .

We succeeded in solving our original problem thanks
to two remarks. First, we invented an advantageous aux-
iliary problem. Second, we discovered an appropriate
supplementary remark to pass from the auxiliary prob-
lem to the original problem. We solved the proposed
problem in two steps as we might cross a creek in two
steps provided we were lucky enough to discover an
appropriate stone in the middle which could serve as a
momentary foothold.

To sum up, we used the less difficult, less ambitious,
special, auxiliary problem as a stepping stone in solving
the more difficult, more ambitious, general, original
problem,

6. Specialization has many other uses which we can-
not discuss here. It may be just mentioned that it can be
useful in testing the solution (CAN YOU CHECK THE RE-
SULT? 2).
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A somewhat primitive kind of specialization is often
vseful to the teacher. It consists in giving some concrete

- interpretation to the abstract mathematical elements of

the problem. For instance, if there is a rectangular paral-
lelepiped in the problem, the teacher may take the class-
room in which he talks as example (section 8). In solid
analytic geometry, a corner of the classroom may serve

- as the origin of coordinates, the floor and two walls as

coordinate planes, two horizontal edges of the room and
one vertical edge as coordinate axes. Explaining the
notion of a surface of revolution, the teacher draws a
curve with chalk on the door and opens it slowly. These
are certainly simple tricks but nothing should be omitted
that has some chance to bring home mathematics to the
students: Mathematics being a very abstract science
should be presented very concretely.

Subconscious work. One evening I wished to discuss
with a friend a certain author but I could not remember
the author’s name. I was annoyed, because I remembered
fairly well one of his stories. 1 remembered also some
story about the author himself which I wanted to tell; I
remembered, in fact, everything except the name. Re-
peatedly, T tried to recollect that name but all in vain.
The next morning, as soon as I thought of the annoy-

- ance of the evening before, the name occurred to me

without any effort.

The reader, very likely, remembers some similar ex-
perience of his own. And, if he is a passionate problem-
solver, he has probably had some similar experience with
problems. It often happens that you have no success at
all with a problem; you work very hard yet without find-
ing anything. But when you come back to the problem
after a night’s rest, or a few days’ interruption, a bright

“idea appears and you solve the problem easily. The
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nature of the problem matters little; a forgotten word,
a difficult word from a crossword-puzzle, the beginning
of an annoying letter, or the solutioi of a mathematical
problem may occur in this way.

Such happenings give the impression of subconscious
work. The fact is that a problem, after prolonged ab-
sence, may return into consciousness essentially clarified,
much nearer to its solution than it was when it dropped
out of consciousness. Who clarified it, who brought it
nearer to the solution? Obviously, oneself, working at it
subconsciously. It is difficult to give any other answer;
although psychologists have discovered the beginnings
of another answer which may turn out some day to be
more satisfactory.

Whatever may or may not be the merits of the theory
of subconscious work, it is certain that there is a limit
beyond which we should not force the conscious reflec-
tion. There are certain moments in which it is better to
leave the problem alone for a while. *Take counsel of
your pillow” is an old piece of advice. Allowing an inter-
val of rest to the problem and to ourselves, we may
obtain more tomorrow with less effort. “If today will not,
tomorrow may” is another old saying. But it is desirable
not to set aside a problem to which we wish to come back
later without the impression of some achievement; at
least some little point should be settled, some aspect of
the question somewhat elucidated when we quit working.

Only such problems come back improved whose solu-
tion we passionately desire, or for which we have worked
with great tension; conscious effort and tension seem to
be necessary to set the subconscious work going. At any
rate, it would be too easy if it were not so; we could
solve difficult problems just by sleeping and waiting for
a bright idea.

Past ages regarded a sudden good idea as an inspira-
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tion, a gift of the gods. You must deserve such a gift by
work, or at least by a fervent wish.10

Symmetry has two meanings, a more usual, particular,
geometric meaning, and a less usual, general, logical
meaning.

Elementary solid geometry considers twa kinds of sym-
metry, symmetry with respect to a plane (called plane of
symmetry) , and symmetry with respect to a point (called
center of symmetry). The human body appears to be
fairly symmetrical but in fact it is not; many interior
organs are quite unsymmetrically disposed. A statue may
be completely symmetrical with respect to a vertical
plane so that its two halves appear completely “inter-
changeable.”

In a more general acceptance of the word, a whole is
termed symmetric if it has interchangeable parts. There
are many kinds of symmetry; they differ in the number
of interchangeable parts, and in the operations which
exchange the parts. Thus, a cube has high symmetry; its
6 faces are interchangeable with each other, and so are
its 8 vertices, and so are its 12 edges. The expression

vz -+ zx + xy

is symmetric; any two of the three letters x, y, z can_be
interchanged without changing the expression.
Symmetry, in a general sense, is important for our
subject. If a problem is symmetric in some ways we may
derive some profit from noticing its interchangeable
parts and it often pays to treat those parts which play

~ the same role in the same fashion (see AUXILIARY ELE-

MENTS, §).

I0For an all-round discussion of “unconscious thinking” see
Jacques Hadamard, The Psychology of Invention in the Mathemat.
ical Field.
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Try to treat symmetrically what is symmetrical, and do
not destroy wantonly any natural symmetry. However,
we are sometimes compelled to treat unsymmetrically
what is naturally symmetrical. A pair of gloves is cer-
tainly symmetrical; nevertheless, nobody handles the pair
quite symmetrically, nobody puts on both gloves at the
same time, but one after the other.

Symmetry may also be useful in checking results; see
section 14,

Terms, old and new, describing the activity of solving
problems are often ambiguous. The activity itself is
familiar to everybody and it is often discussed but, as
other mental activities, it is difficult to describe, In the
absence of a systematic study there are no technical terms
to describe it, and certain usual half-technical terms
often add to the confusion because they are used in dif-
ferent meanings by different authors.

The following short list includes a few new terms used
and a few old terms avoided in the present study, and
also some old terms retained despite their ambiguity.

The reader may be confused by the following discus.
sion of terminology unless his notions are well anchored
in examples.

1. Analysis is neatly defined by pappus, and it is a use-
ful term, describing a typical way of devising a plan,
starting from the unknown (or the conclusion) and
working backwards, toward the data (or the hypothe-
sis) . Unfortunately, the word has acquired very different
meanings (for instance, of mathematical, chemical, logi-
cal analysis) and therefore, it is regretfully avoided in
the present study.

2. Condition links the unknown of a “problem to
find” to the data (see PROBLEMS TO FIND, PROBLEMS TO
PROVE, 8). In this meaning, it is a clear, useful and un-

Terms, Old and New 201

avoidable term. It is often necessary to decompose the
condition into several parts [into parts (I) and (II} in
the examples DECOMPOSING AND RECOMBINING, 7, 8}. Now,
each part of the condition is usually called a condition.
This ambiguity which is sometimes embarrassing could
be easily avoided by introducing some technical term to
denote the parts of the whole condition; for instance,
such a part could be called a “clause.”

3. Hypothesis denotes an essential part of a mathemat-
jcal theorem of the more usual kind (se¢ PROBLEMS TO
FIND, PROBLEMS TO PROVE, 4) . The term, in this meaning,
is perfectly clear and satisfactory. The dificulty is that
each part of the hypothesis is also called a hypothesis so
that the hypothesis may consist of several hypotheses.
The remedy would be to call each part of the whole
hypothesis a “clause,” or something similar. (Compare
the foregoing remark on “condition.”)

4. Principal parts of a problem are defined in pros-
LEMS TO FIND, PROBLEMS TQ PROVE, 3, 4.

5. Problem to find, problem to prove are a pair of new
terms, introduced regretfully to replace historical terms
whose meaning, however, is confused beyond redemption
by current usage. In Latin versions of Greek mathemati-

" cal texts, the common name for both kinds of problems

is “propositio”; a “problem to find” is called “problema,”
and a “problem to prove” “theorema.” In old-fashioned
mathematical language, the words proposition, problem,
theorem have still this “Euclidean” meaning, but this is
completely changed in modern mathematical language;
this justifies the introduction of new terms,

6. Progressive reasoning was used in various meanings
by various authors, and in the old meaning of “synthesis”
(see g) by some authors. The latter usage is defensible
but the term is avoided here.

7. Regressive reasoning was used in the old meaning of
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“analysis” by some authors (compare 1, 6). The term is
defensible but avoided here.

8. Solution is a completely clear term if taken in its
purely mathematical meaning; it denotes any object satis-
tying the condition of a “problem to find.” Thus, the
solutions of the equation x2 — gx + 2 — o are its roots,
the numbers 1 and 2. Unfortunately, the word has also
other meanings which are not purely mathematical and
which are used by mathematicians along with its mathe-
matical meaning. Solution may also mean the “process of
solving the problem” or the “work done in solving the
problem”; we use the word in this meaning when we talk
about a “difficult solution.” Solution may alsc mean the
result of the work done in solving the problem; we may
use the word in this meaning when we talk about a
“beautiful solution.” Now, it may happen that we have to
talk in the same sentence about the object satisfying the
condition of the problem, about the work of obtaining it,
and about the result of this work; if we yield to the temp-
tation to call all three things “solution” the sentence
cannot be too clear.

9. Synthesis is used by parrus in a well defined mean-
ing which would deserve to be conserved. The term is,
however, regretfully avoided in the present study, for the
same reasons as its counterpart “analysis” (see under 1).

Test by dimension is a well-known, quick and efficient
means to check geometrical or physical formulas.

1. In order to recall the operation of the test, let us
consider the frustum of a right circular cone. Let

R be the radius of the lower base,

7 the radius of the upper base,

h the altitude of the frustum,

S the area of the lateral surface of the frustum.

H R, r, h are given, § is visibly determined. We find the
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expression
S=a(R+rV/(R—r2-+#
to which we wish to apply the test by dimension.

The dimension of a geometric quantity is easily visible.
Thus, R, 7, h are lengths, they are measured in centi-
meters if we use scientific units, their dimension is cm.
The area § is measured in square centimeters, its dimen-
sion is em2. Now, » = 8.14159 . . . is a mere number; if
we wish to ascribe a dimension to a purely numerical
quantity it must be em9 = 1.

Each term of a sum must have the same dimension
which is also the dimension of the sum, Thus, R, », and
R + r have the same dimension, namely ¢m. The two
terms (R — 1) and A2 have the same dimension (as they
must) , cm2.

The dimension of a product is the product of the di-
mensions of its factors, and there is a similar rule about
powers. Replacing the quantities by their dimensions on
both sides of the formula that we are testing, we obtain

em? = 1 cm S,
This being visibly so, the test could not detect any error
in the formula. The formula passed the test.

For other examples, sce section 14, and CAN YOU CHECK
THE RESULT? 2.

2. We may apply the test by dimension to the final
result of a problem or to intermediary results, to our own
work or to the work of others (very suitable in tracing
mistakes in examination papers), and also to formulas
that we recollect and to formulas that we guess,

If you recollect the formulas 4ar2 and 4473/ for the

- area and the volume of the sphere, but are not quite sure

which is which, the test by dimension easily removes the
doubt.

8. The test by dimension is even more important in
physics than in geometry.
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Let us consider a “simple” pendulum, that is, a small
heavy body suspended by a wire whose length we regard
as invariable and whose weight we regard as negligible.
Let { stand for the length of the wire, g for the gravita-
tional acceleration, and T for the period of the pen-
dulum.

Mechanical considerations show that T depends on !
and g alone. But what is the form of the dependence?
We may remember or guess that

T = clmgn

where ¢, m, n are certain numerical constants. That is,
we suppose that 7 is proportional to certain powers, I,
g ofland g.

We look at the dimensions. As T is a time, it is meas-
ured in seconds, its dimension is sec. The dimension of
the length ! is cm, the dimension of the acceleration g is
cm sec—2, and the dimension of the numerical constant ¢
is 1. The test by dimension yields the equation

sec = 1 ° (em)™ (cm sec™ 2y
or
sec = (cmyntr sec—2n,
Now, we must have the same powers of the funda-

mental units ¢m and sec on both sides, and thus we
obtain

c=m-+n 1= —2n
and hence

n= —

form
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The test by dimension yields much in this case but it
cannot vield everything. First, it gives no information
about the value of the constant ¢ (which is, in fact, 2x).
Second, it gives no information about the limits of valid-
ity; the formula is valid only for small oscillations of the
pendulum and only approximately (it is exact for “in-
finitely small” oscillations) . In spite of these limitations,
there is no doubt that the consideration of the dimen-
sions has allowed us to foresee quickly and with the most
elementary means an essential part of a result whose
exhaustive treatment demands much more advanced
means. And this is so in many similar cases.

'The future mathematician should be a clever problem-
solver; but to be a clever problem-solver is not enough.
In due time, he should solve sigmificant mathematical
problems; and first be should find out for which kind of
problems his native gift is particularly suited.

For him, the most important part of the work is to
look back at the completed solution. Surveying the
course of his work and the final shape of the solution,
he may find an unending variety of things to observe, He
may meditate upon the difficulty of the problem and
about the decisive idea; he may try to see what hampered
him and what helped him finally. He may look out for
simple intuitive ideas: Can you see it at a glance? He
may compare and develop various methods: Can you
derive the result differently? He may try to clarify his
present problem by comparing it to problems formerly
solved; he may try to invent new problems which he can
solve on the basis of his just completed work: Can you

- use the result, or the method, for some other problem?

Digesting the problems he solved as completely as he can,
he may acquire well ordered knowledge, ready to use.
The future mathematician learns, as does everybody



206 The Intelligent Problem-solver

else, by imitation and practice. He should look out for
the right model to imitate. He should observe a stimu-
lating teacher. He should compete with a capable friend.
Then, what may be the most important, he should read
not only current texthooks but good authors till he finds
one whose ways he is naturally inclined to imitate. He
should enjoy and seek what seems to him simple or in-
structive or beautiful. He should solve problems, choose
the problems which are in his line, meditate upon their
solution, and invent new problems. By these means, and
by all other means, he should endeavor to make his first
important discovery: he should discover his likes and his
dislikes, his taste, his own line.

The intelligent problem-solver often asks himself ques-
tions similar to those contained in our list. He, perhaps,
discovered questions of this sort by himself; or, having
heard such a question from somebody, he discovered its
proper use by himself. He is possibly not conscious at all
that he repeats the same stereotyped question again and
again. Or the question is his particular pet; he knows
that the question is part of his mental attitude appropri-
ate in such and such a phase of the work, and he sum-
mons up the right attitude by asking the right question.

The intelligent problem-solver may find the questions
and suggestions of our list useful. He may understand
quite well the explanations and examples illustrating a
certain question, he may suspect the proper use of the
question; but he cannot attain real understanding unless
he comes across the procedure that the question tries to
provoke in his own work and, by having experienced its
usefulness, discovers the proper use of the question for
himself.

The intelligent problem-solver should be prepared to
ask all questions of the list but he should ask none unless
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he is prompted to do so by careful consideration of the
problem at hand and by his own unprejudiced judgment.
In fact, he must recognize by himself whether the present
situation is sufficiently similar or not to some other situ-
ation in which he saw the question successfully applied.

The intelligent problem-solver tries first of all to
understand the problem as fully and as clearly as he can.
Yet understanding alone is not enough; he must concen-
trate upon the problem, he must desire earnestly to
obtain its solution. If he cannot summon up real desire
for solving the problem he would do better to leave it
alone. The open secret of real success is to throw your
whole personality into your problem.

The intelligent reader of a mathematical book desires
two things: .

First, to see that the present step of the argument is
correct.

Second, to see the purpose of the present step.

The intelligent listener to a mathematical lecture has
the same wishes. If he cannot see that the present step
of the argument is correct and even suspects that it 1s,
possibly, incorrect, he may protest and ask a question. if
he cannot see any purpose in the present step, nor sus-
pect any reason for it, he nsually cannot even formulate
a clear objection, he does not protest, he is just dismayed
and bored, and loses the thread of the argument.

The intelligent teacher and the intelligent author of
textbooks should bear these points in mind. To write
and speak correctly is certainly necessary; but it is not
sufficient. A derivation correctly presented in the book
or on the blackboard may be inaccessible and uninstruc-
tive, if the purpose of the successive steps is incompre-
hensible, if the reader or listener cannot understand how
it was humanly possible io find such an argument, if be
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is not able to derive any suggestion from the presenta-
tion as to how he could find such an argument by
himselt.

The questions and suggestions of our list may be use-
ful to the author and to the teacher in emphasizing the
purpose and the motives of his argument. Particularly
useful in this respect is the question: pID WE USE ALL THE
DATA? The author or the teacher may show by this ques-
tion a good reason for considering the datum that has
not been used heretofore. The reader or the listener can
use the same question in order to understand the
author’s or the teacher’s reason for considering such and
such an element, and he may feel that, asking this ques-

tion, he could have discovered this step of the argument
by himself,

The traditional mathematics professor of the popular
legend is absentminded. He usually appears in public
with a lost umbrella in each hand. He prefers to face the
blackboard and to turn his back on the class. He writes a,
he says b, he means ¢; but it should be d. Some of his
sayings are handed down from generation to generation.

“In order to solve this differential equation you look
at 1t till a solution occurs to you.”

""This principle is so perfectly general that no particu-
lar application of it is possible.”

“Geometry is the art of correct reasoning on incorrect
figures.”

“My method to overcome a difficulty is to go round it.”

“What is the difference between method and device? A
method is a device which you use twice.”

After all, you can learn something from this traditional
mathematics professor. Let us hope that the mathematics
teacher from whom you cannot learn anything will not
become traditional.
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Variation of the problem. An insect (as mentioned
elsewhere) tries to escape through the windowpane, tries
the same hopeless thing again and again, and does not
try the next window which is open and through which it
came into the room. A mouse may act more intelligently;
caught in the trap, he tries to squeeze through between
two bars, then between the next two bars, then between
other bars; he varies his trials, he explores various pos-
sibilities. A man is able, or should be able, to vary his
trials still more intelligently, to explore the various pos-
sibilities with more understanding, to learn by his errors
and shortcomings. “Try, try again” is popular advice. It
is good advice. The insect, the mouse, and the man
follow it; but if one follows it with more success than the
others it is because he varies his problem more intelli-
gently.

1. At the end of our work, when we have obtained the
solution, our conception of the problem will be fuiler
and more adequate than it was at the outset. Desiring
to proceed from our initial conception of the problem to
a more adequate, better adapted conception, we try vari-
ous standpoints and we view the problem from different
sides,

Success in solving the problem depends on choosing
the right aspect, on attacking the fortress from its ac-
cessible side. In order to find out which aspect is the
right one, which side is accessible, we try various sides
and aspects, we vary the problem.

2. Variation of the problem is essential. This fact can
be explained in various ways. Thus, from a certain point
of view, progress in solving the problem appears as mo-
bilization and organization of formerly acquired knowl-
edge. We have to extract from our memory and to work
into the problem certain elements. Now, variation of the

- problem helps us to extract such elements. How?
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We remember things by a kind of “action by contact,”
called “mental asscri~tion”; what we have in our mind
at present tends to recall what was in contact with it at
some previous occasion. (There is no space and no need
to state more neatly the theory of association, or to dis-
coss its limitations.) Varying the problem, we bring in
new points, and so we create new contacts, new possibili-
ties of contacting elements relevant to our problem.

3. We cannot hope to solve any worth-while problem
without intense concentration. But we are easily tired by
intense concentration of our attention upon the same
point. In order to keep the attention alive, the object on
which it is directed must unceasingly change.

If our work progresses, there is something to do, there
are new points to examine, our attention is occupied, our
interest is alive. But if we fail to make progress, our at-
tention falters, our interest fades, we get tired of the
problem, our thoughts begin to wander, and there is
danger of losing the problem altogether. To escape from
this danger we have to set ourselves a new question about
the problem.

The new question unfolds untried possibilities of con-
tact with our previous knowledge, it revives our hope of
making useful contacts. The new question reconquers
our interest by varying the problem, by showing some
new aspect of it

4. Example. Find the volume of the frustum of a pyra-
mid with square base, being given the side of the lower
base a, the side of the upper base b, and the altitude of
the frustum h.

The problem may be proposed to a class familiar with
the formulas for the volume of prism and pyramid. I
the students do not come forward with some idea of their
own, the teacher may begin with varying the data of the
problem. We start from a frustum with @ > b, What
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happens when & increases till it becomes equal to a? The
frustum becomes a prism and the volume in question
becomes aZh. What happens when b decreases tll it
becomes equal to o? The frustum becomes a pyramid
and the volume in question becomes a2h/3.

This variation of the data contributes, first of all, to
the intereit of the problem. Then, it may suggest using,
in some way or other, the results quoted about prism and
pyramid. At any rate, we have found definite properties
of the final result; the final formula must be such that it
reduces to a2h for b = a and to a2h/g for b = o. It is an
advantage to foresee properties of the result we are try-
ing to obtain. Such properties may give valuable sugges-
tions and, in any case, when we have found the final
formula we shall be able to test it, We have thus, in
advance, an answer to the question: CAN YOU CHECK THE
RESULT? (See there, under 2.)

5. Example. Construct a trapezoid being given its four
sidesa, b, ¢, d.

Let a be the lower base and ¢ the upper base; a and ¢
are parallel but unequal, b and d are not parallel. If
there is no other idea, we may begin with varying the
data. _

We start from a trapezoid with a > ¢. What happens
when ¢ decreases till it becomes equal to o? The trapezoid
degenerates into a triangle. Now a triangle is a familiar
and simple figure, which we can construct from various
data; there could be some advantage in introducing this
triangle into the figure. We do so by drawing just one

- auxiliary line, a diagonal of the trapezoid (Fig. 21). Ex-

amining the triangle we find however that it is scarcely
usefu]; we know twao sides, ¢ and d, but we should have
three daca.

Let us try something else. What happens when ¢ in-
Creases till it becomes equal to e? The trapezoid becomes
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FIG. 21

a parallelogram. Could we use it? A little examination
(see Fig. 23) directs our attention to the triangle which
we have added to the original trapezoid when drawing
the parallelogram. This triangle is easily constructed; we
know three data, its three sides b, d, and ¢ — c.

G
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Varying the original problem {construction of the
trapezoid) we have been led to a more accessible aux-
iliary problem (construction of the triangle). Using the
resuit of the auxiliary problem we easily solve our arig-
inal problem (we have to complete the parallelogram).

Our example is typical. It is also typical that our first
attempt failed. Looking back at it, we may see however
that that first attempt was not so useless. There was some
idea in it; in particular, it gave us an opportunity to
think of the construction of a triangle as means to our
end. In fact, we arrived at our second, successful trial by
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modifying our first, unsuccessful trial. We varied ¢; we
first tried to decrease it, then to increase it.

6. As in the foregoing example, we often have to try
various modifications of the problem. We have to vary, to

restate, to transform it again and again till we succeed

eventually in finding something useful. We may learn by
failure; there may be some good idea in an unsuccessful
trial, and we may arrive at a more successful trial by
modifying an unsuccessful one. What we attain after
various trials is very often, as in the foregoing example,
a more accessible auxiliary problem.

#. There are certain modes of varying the problem
which are typically useful, as going back to the DEFINI-
TION, DECOMPOSING AND RECOMBINING, introducing AUXIL-
IARY ELEMENTS, GENERALIZATION, SPECIALIZATION, and the
use of ANALOGY. _

8. What we said a while ago (under g) about new
questions which may reconquer our interest is important
for the proper use of our list.

A teacher may use the list to help his students. If the
student progresses, he needs no help and the teacher
should not ask him any questions, but allow him to work
alone which is obviously better for his independence. But
the teacher should, of course, try to find some suitable
question or suggestion to help him when he gets stuck.
Because then there is danger that the student will get
tired of his problem and drop it, or lose interest and
make some stupid blunder out of sheer indifference.

We may use the list in solving our own problems. 'To
use it properly we proceed as in the former case. When
our progress is satisfactory, when new remarks emerge
spontaneously, it would be simply stupid to hamper our
spontanecus progress by extraneous questions. But when
our progress is blocked, when nothing occurs to us, there
is danger that we may get tired of our problem. Then it
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is time to think of some general idea that could be help-
ful, of some question or suggestion of the list that might
be suitable. And any question is welcome that has some
chance of showing a new aspect of the problem; it may

reconguer our interest, it may keep us working and
thinking.

What is the unknown? What is required? What do you
want? What are you supposed to secke

What are the data? What is given? What have you?

What is the condition? By what condition is the un-
known linked to the data?

These questions may be used by the teacher to test the
understanding of the problem; the student should be
able to answer them clearly. Moreover, they direct the
student’s attention to the principal parts of a “problem
to find,” the unknown, the data, the condition. As the
consideration of these paris may be necessary again and
again, the questions may be often repeated in the later
phases of the solution. (Examples in sections 8, 10, 18,
20; SETTING UP EQUATIONS, 3, 4; PRACTICAL PROBLEMS, 1;
puzzLES; and elsewhere.)

The questions are of the greatest importance for the
problem-solver. He checks his own understanding of the
problem, he focuses his attention on this or that prin-
cipal part of the problem. The solution consists essen-
tially in linking the unknown to the data. Therefore, the
problem-solver has to focus those elements again and
again, asking: What ¢s the unknown? What are the data?

The problem may have many unknowns, or the condi-
tion may have various parts which must be considered
separately, or it may be desirable to consider some datum
by itsell. Therefore, we may use various modifications of
our questions, as: What are the unknowns? What is the
first datum? What is the second datum? What are the
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various parts of the condition? What is the first clause
of the condition?

The principal parts of a “problem to prove” are the
hypothesis and the conclusion, and the corresponding
questions are: What is the hypothesis? What is the con-
cluston? We may need some variation of verbal expres-
sion or modification of these frequently useful questions
as: What do you assume? What are the various parts of
your assumption? (Example in section 19.)

Why proofs? There is a traditional story about New-
ton: As a young student, he began the study of geometry,
as was usual in his time, with the reading of the Elements
of Euclid. He read the theorems, saw that they were true,
and omitted the proofs. He wondered why anybody
should take pains to prove things so evident. Many years
later, however, he changed his opinion and praised
Euclid.

The story may be authentic or not, yet the question
remains: Why should we learn, or teach, proofs? What 1s
preferable: no proof at all, or proofs for everything, or
some proofsi And, if only some proofs, which proofs?

1. Gomplete proofs. For a logician of a certain sort
only complete proofs exist. What intends to be a proof
must leave no gaps, no loopholes, no uncertainty what-
ever, or else it is no proof. Can we find complete proofs
according to such a high standard in everyday life, or in
legal procedure, or in physical science? Scarcely. Thus, it
is difficult to understand how we could acquire the idea
of such a strictly complete proof.

We may say, with a little exaggeration, that humanity
learned this idea from one man and one book: from
Euclid and his Elements. In any case, the study of the

-elements of plane geometry yields still the best oppor-

tunity to acquire the idea of rigorous proof.
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Let us take as an example the proof of the theorem: I'n
any triangle, the sum of the three angles is equal o two
right angles.11 Fig. 23, which is an inalienable mental
_property of most of us, needs little explanation. There
is a line through the vertex A parallel to the side BC.

A

FIG. 23

The angles of the triangle at B and at C are equal to ce:-
tain angles at A, as is emphasized in the hgure, since
alternate angles are equal in general. The three angles
of the triangle are equal to three angles with a common
vertex 4, forming a straight angle, or two right angles;
and so the theorem is proved.

If a student has gone through his mathematics classes
without having really understood a few proofs like the
foregoing one, he is entitled to address a scorching re-
proach to his school and to his teachers. In fact, we
should distinguish berween things ef more and less im-
portance. If the student failed to get acquainted with
this or that particular geometric fact, he did not miss so
much; he may have little use for such facts in later life.
But if he failed to get acquainted with geometric proofs,
he missed the best and simplest examples of true evi-
dence and he missed the best opportunity to acquire the

11 Part of Proposition g2 of Book T of Euclid’s Elements. The
following proof is not Euclid’s, but was known to the Greeks.
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idea of strict reasoning. Without this idea, he lacks a true
standard with which to compare alleged evidence of all
sorts aimed at him in modern life.

In short, if general education intends to bestow on the
student the ideas of intuitive evidence and logical rea-
soning, it must reserve a place for geometric proofs.

2. Logical system. Geometry, as presented in Euclid’s
Elements, is not a mere collection of facts but a logical
system. The axioms, definitions, and propositions are not
listed in a random sequence but disposed in accom-
plished order. Each proposition is so placed that it can
be based on the foregoing axioms, definitions, and propo-
sitions. We may regard the disposition of the proposi-
tions as Euclid’s main achievement and their logical
system as the main merit of the Elements.

Euclid’s geometry is not only a logical system but it is
the first and greatest example of such a system, which
other sciences have tried, and are still trying, to imitate.
Should other sciences—especially those very far from geom-
etry, as psychology, or jurisprudence—imitate FEuclid's
rigid logic? This is a debatable question; but nobody can
take part in the debate with competence who is not
acquainted with the Euclidean system.

Now, the system of geometry is cemented with proofs.
Each proposition is linked to the foregoing axioms, defi-
nitions, and propositions by a proof. Without under-
standing such proofs we cannot understand the very
essence of the system.

In short, if general education intends to bestow on the
student the idea of logical system, it must reserve a place
for geometric proofs.

8. Mnemotechnic system. The author does not think
that the ideas of intuitive evidence, strict reasoning, and
logical system are superfluous for anybody. There may
be cases, however, in which the study of these ideas is not
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considered absolutely necessary, owing to lack of time,
or for other reasons. Yet even in such cases proofs may
be desirable.

Proofs yield evidence; in so doing, they hold together
the logical system; and they help us to remember the
various items held together, Take the example discussed
above, in connection with Fig. 23. This figure renders
evident the fact that the sum of the angles in a triangle
equals 180°. The figure connects this fact with the other
fact that alternate angles are equal. Connected facts how-
ever are more interesting and are better retained than
isolated facts. Thus, our figure fixes the two connected
geometric propositions in our mind and, finally, the
figure and the propositions may become our inalienable
mental property.

Now we come to the case in which the acquisition of
general ideas is not regarded as necessary, only that of
certain facts is desired. Even in such a case, the facts must
be presented in some connection and in some sort of sys-
tem, since isolated items are laboriously acquired and
easily forgotten. Any sort of connection that unites the
facts simply, naturally, and durably, is welcome here.
The system need not be founded on logic, it must only
be designed to aid the memory effectively; it must be
what is called a mnemotechnic system. Yet even from the
point of view of a purely mnemotechnic system, proofs
may be useful, especizily simple proofs. For instance, the
student must learn the fact about the sum of the angles
in the triangle and that other fact about the alternate
angles. Can any device to retain these facts be simpler,
more natural or more effective than Fig. 237

In short, even when ne special importance is attached
to general logical ideas proofs may be useful as 2 mnemo-
technic device.

4. The cookbook system. We have discussed the advan-
tages of proofs but we certainly did not advocate that ali
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proofs should be given “in extenso.” On the contrary,
there are cases in which it is scarcely possible to do so;
an important case is the teaching of the differential and
integral calculus to students of engineering.

If the calculus is presented according to modern stand-
ards of rigor, it demands proofs of a certain degree of
difficulty and subtlety (“cpsilon-proofs”). But engineers
study the calculus in view of its application and have
peither enough time nor enough training or interest to
struggle through long proofs or to appreciate subtleties.
Thus, there is a strong temptation to cut out all the
proofs. Doing so, however, we reduce the calculus to the
level of the cookbook.

The cookbook gives a detailed description of ingredi-
ents and procedures but no proofs for its prescriptions
or reasons for its recipes; the proof of the pudding is in
the eating. The cookbook may serve its purpose perfectly.
In fact, it nced not have any sort of logical or mnemo-
technic system since recipes are written or printed and
not retained in memory.

Yet the author of a textbook of calculus, or 2 college
instructor, can hardly serve his purpose if he follows the
system of the cookbook too closely. If he teaches proce-
dures without proofs, the unmotivated procedures are not
understood. If he gives rules without reasons, the un-
connected rules are quickly forgotten. Mathematics can-
not be tested in exactly the same manner as a pudding;
if all sorts of reasoning are debarred, a course of calculus
may easily become an incoherent inventory of indigest-
ible information.

‘5. Incomplete proofs. The best way of handling the
ditfemma between too heavy proofs and the level of the
cookbook may be to make reasonable use of incomplete
proofs.

For a strict logician, an incomplete proof is no proof
at all. And, certainly, incomplete proofs ought to be
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carefully distinguished from complete proofs; to confuse
one with the other is bad, to sell one for the other is
worse. [t is painful when the author of a textbook pre-
sents an incomplete proof ambiguously, with visible hesi-
tation between shame and the pretension that the proof
is complete. But incomplete proofs may be useful when
they are used in their proper place and in good taste,
Their purpose is not to replace complete proofs, which
they never could, but to lend interest and coherence to
the presentation.

Example 1. An algebraic equation of degree n has ex-
actly n roots. This proposition, called the Fundamental
Theorem of Algebra by Gauss, must often be presented
to students who are quite unprepared for understanding
its proof. They know however that an equation of the
first degree has one root, and one of the second degree
two roots. Moreover the difficult proposition has a part
that can be easily shown: no equation of degree n has
more than n different roots. Do the facts mentioned con-
stitute a complete proof for the Fundamental Theorem?
By no means. They are sufficient however to lend it a
certain interest and plausibility—and to fix it in the
minds of the students, which is the main thing.

Example 2. The sum of any {wo of the plane angles
formed by the edges of a trihedral angle is greater than
the third. Obviously, the theorem amounts to affirming
that in a spherical triangle the sum of any two sides is
greater than the third. Having observed this, we nat-
urally think of the analogy of the spherical triangle with
the rectilinear triangle. Do these remarks constitute a
proof? By no means; but they help us to understand and
to remember the proposed theorem.

Our first example has historical interest. For about
250 years, the mathematicians believed the Fundamental
Theorem without complete proof—in fact, without much
more basis than what was mentioned above. Our second
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example points to ANALOGY as an important source of
conjectures. In mathematics, as in the natural and physi-
cal sciences, discovery often starts from observation,
analogy, and induction. These means, tastefully used in
framing a plausible heuristic argument, appeal particu-
larly to the physicist and the engineer. (See also inbuc-
TION AND MATHEMATICAL INDUCTION, 1, 2, 3.)

‘The role and interest of incomplete proofs is explained
to a certain extent by our study of the process of the solu-
tion. Some experience in solving problems shows that the
first idea of a proof is very frequently incomplete. The
most essential remark, the main connection, the germ of
the proof may be there, but details must be provided
afterwards and are often troublesome, Some authors, but
not many, have the gift of presenting just the germ of the
proof, the main idea in its simplest form, and indicating
the nature of the remaining details. Such a proof, al-
though incomplete, may be much more instructive than
a proof presented with complete details.

In short, incomplete proofs may be used as a sort of
mnemotechnic device (but, of course, not as substitutes
for complete proofs) when the aim is tolerable coherence
of presentation and not strictly logical consistency.

It is very dangerous to advocate incompleie proofs.
Possible abuse, however, may be kept within bounds by a
few rules. First, if a proof is incomplete, it must be in-
dicated as such, somewhere and somehow. Second, an
author or a teacher is not entitled to present an incom-
plete proof for a theorem unless he knows very well a
complete proof for it himself.

And it may be confessed that to present an incomplete
proof in good taste is not easy at all. |

Wisdom of proverbs. Solving problems is a fundamen-
tal human activity. In fact, the greater part of our con-
scious thinking is concerned with problems. When we
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do not indulge in mere musing or daydreaming, our
thoughts are directed toward some end; we seek means,
we seek to solve a problem.

Some people are more and others less successful in
attaining their ends and solving their problems. Such
differences are noticed, discussed, and commented upon,
and certain proverbs seem to have preserved the quintes-
sence of such comments. At any rate, there are a good
many proverbs which characterize strikingly the typical
procedures followed in solving problems, the points of
common sense invelved, the usual tricks, and the usual
errors. There are many shrewd and some subtle remarks
in proverbs but, obviously, there is no scientific system
free of inconsistencies and obscurities in them. On the
contrary, many a proverb can be matched with another
proverb giving exactly opposite advice, and there is a
great latitude of interpretation. It would be foolish to
regard proverbs as an authoritative source of universally
applicable wisdom but it would be a pity to disregard
the graphic deseription of heuristic procedures provided
by proverbs.

It could be an interesting task to collect and group
proverbs about planning, seeking means, and choosing
between lines of action, in short, proverbs about solving
problems. Of the space needed for such a task only a
small fraction is available here; the best we can do is to
quote a few proverbs illustrating the mzin phases of the
solution emphasized in our list, and discussed in sections
6 to 14 and elsewhere. The proverbs quoted will be
printed in italics.

1. The very first thing we must do for our problem is
to understand it: Who understands ill, answers ill. We
must see clearly the end we have to attain: Think on the
end before you begin. This is an old piece of advice;
“respice finem” is the saying in Latin. Unfortunately, not
everybody heeds such good advice, and people often start
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speculating, talking, and even acting fussily without hav-
ing properly understood the aim for which they should
work. 4 fool looks to the beginning, a wise man regards
the end. If the end is not clear in our mind, we may
easily stray from the problem and drop it. 4 wise man

begins in the end, a fool ends in the beginning.

Yet it is not enough to understand the problem, we
must alsc desire its solution. We have no chance to solve
a difficult problem without a strong desire to solve it,
but with such desire there is a chance. Where there is a
will there is a way.

2. Devising a plan, conceiving the idea of an appro-
priate action, is the main achievement in the solution of
a problem,

A good idea is a piece of good fortune, an inspiration,
a gift of the gods, and we have to deserve it: Diligence 15
the mother of good luck. Perseverance kills the game. An
oak is not felled at one stroke. If at first you don’t suc-
ceed, try, try again. It is not enough however to try re-
peatedly, we must try different means, vary our trials.
Try all the keys in the bunch. Arrows are made of all
sorts of wood. We must adapt our trials to the circum-
stances. As the wind blows you must set your sail. Cut
your coat according to ihe cloth. We must do as we may
if we can’t do as we would. If we have failed, we must
try something else. 4 wise man changes his mind, a fool
never does. We should even be prepared from the outset
for a possible failure of our scheme and have another
one in reserve. Have two strings to your bow. We may,
of course, overdo this sort of changing from one scheme
to another and lose time. Then we may hear the ironical
comment: Do and undo, the day is long enough. We are
likely to blunder less if we do not lose sight of our aim.
The end of fishing is not angling but catching.

We work hard to extract something helpful from our
memory, yet, quite often, when an 1dea that could be
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helpful presents itself, we do not appreciate it, for it is
s0 inconspicuous. The expert has, perhaps, no more ideas
than the inexperienced, but appreciates more what he
has and uses it better. A wise man will make more oppor-
tunities than he finds, A wise man will make tools of
what comes to hand. A wise man turns chance into good
fortune. Or, possibly, the advantage of the expert is that
he is continually on the lookout for opportunities. Have
an eye to the main chance.

3. We should start carrying out our plan at the right
moment, when it is ripe, but not before. We should not
start rashly. Look before you leap. Try before you trust.
4 wise delay makes the road safe. On the other hand, we
should not hesitate too long. If you will sail without
danger you must never put io sea. Do the likeliest and
hope the best. Use the means and God will give the
blessing.

We must use our judgment to determine the right
moment. And here is a timely warning that points out
the most common fallacy, the most usual failure of our
judgment: We soon believe what we desire.

Our plan gives usually but a general outline. We have
to convince ourselves that the details fit into the outline,
and so we have to examine carefully each detail, one
after the other, Step after step the ladder is ascended.
Little by little as the cat ate the flickle. Do it by de-
grees.

In carrying out our plan we must be careful to arrange
its steps in the proper order, which is frequently just
the reverse of the order of invention. What a fool does at
last, @ wise man daoes at first.

4. Looking back at the completed solution is an im-
portant and instructive phase of the work. He thinks not
well that thinks not again. Second thoughts are best.

Reexamining the solution, we may discover an addi-
tional confirmation of the result. Yet it must be pointed
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out to the beginner that such an additional confirmation
is valuable, that two proofs are better than one. It is safe
riding at two anchors.

5. We have by no means exhausted the comments of
proverbs on the solution of problems. Yet many otl}er
proverbs which could be quoted would scarcely furnish
new themes, only variations on the themes already men-
tioned. Certain more systematic and more sophisticated
aspects of the process of solution are hardly within the
scope of the Wisdom of Proverbs.

In describing the more systematic aspects of the solu-
tion, the author tried now and then to imitate the pecul-
jar turn of proverbs, which is not easy. Here follow 2
few “synthetic”’ proverbs which describe somewhat more
sophisticated attitudes.

The end suggests the means,

Your five best friends are What, Why, Where, When,
and How. You ask What, you ask Why, you ask Where,
When, and How—and ask nobody else when you need
advice.

Do not believe anything but doubt only what is worth
doubting.

Look around when you have got your first mushroom
or made your first discovery; they grow in clusters.

Working backwards. If we wish to understand human
behavior we should compare it with arimal behavior.
Animals also “have problems” and “solve problems.”
Experimental psychology has made essential progress in
the last decades in exploring the “problem-solving” activ-
ities of various animals. We cannot discuss here these
investigations but we shall describe sketchily just one
simple and instructive experiment and our description
will serve as a sort of comment upon the method of analy-
sis, or method of “working backwards.” This method, by
the way, is discussed also elsewhere in the present book,
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under the name of rarrus to whom we owe an important
description of the method.

1. Let us try to find an answer to the following tricky
question: How can you bring up from the river exactly
six quarts of water when you have only two containers,
a four quart pail and a nine quart pail, to measure with?

Let us visualize clearly the given tools we have to work
with, the two containers. (What is given?) We imagine
two cylindrical containers having equal bases whose
altitudes are as g to 4, see Fig. 24. If along the lateral sur-

9

FIG. 24

face of each container there were a scale of equally spaced
horizontal lines from which we could tell the height of
the waterline, our problem would be easy. Yet there is no
such scale and so we are still far from the solution.

We do not know yet how 1o measure exacily 6 quarts;
but could we measure something else? (If you cannot
solve the propased problem try to solve first some related
problem. Could you derive something useful from the
data?) Let us do something, let us play around a little.
We could fill the larger container to full capacity and
empty so much as we can into the smaller container; then
we could get 5 quarts. Could we also get 6 quarts? Here
are again the two empty coniainers. We could also . . .

We are working now as most people do when con-
fronted with this puzzle. We start with the two empty
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- containers, we try this and that, we empty and £ll, and

when we do not succeed, we start again, trying something
else. We are working forwards, from the given initial
situation to the desired final situation, from the data to
the unknown. We may succeed, after many trials, acci-
dentally.

2. But exceptionally able people, or people who had
the chance to learn in their mathematics classes some-
thing more than mere routine operations, do not spend
too much time in such trials but turn around, and start
working backwards.

What are we required to do? (What is the unknown?)

Let us visualize the final situation we aim at as clearly

as possible. Let us imagine that we have here, before us,

% 6

%

FIG. 25

the larger container with exactly 6 quarts in it and the
smaller container empty as in Fig. 25. (Let us start from
what is required and assume what is sought as already
found, says Pappus.)

From what foregoing situation could we obtain the
desired final situation shown in Fig. 252 (Let us inquire
from what antecedent the desived result could be derived,
says Pappus.) We could, of course, fill the larger con-
tainer to full capacity, that is, to g quarts. But then we
should be able to pour out exactly three quarts. To do
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that . . . we must have just one quart in the smaller con-
tainer! That's the idea. See Fig. 26.

(The step that we have just completed is not easy at
all. Few persons are able to take it without much fore-
going hesitation, In fact, recognizing the significance of
this step, we foresee an outline of the following solu-
tion.)

9
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FIG. 26

But how can we reach the situation that we have just
found and illustrated by Fig. 262 (Let us inquire again
what could be the antecedent of that antecedent)) Since
the amount of water in the river is, for our purpose, un-
limited, the situation of Fig. 26 amounts to the same as
the next one in Fig, 27

ISPy I

FIG. 27

or the following in Fig. 28.
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FIG. 28

It is easy to recognize that if any one of the situations
in Figs. 26, 27, 28 is obtained, any other can be obtained
just as well, but it is not so easy to hit upon Fig. 28,
unless we have seen it before, encountered it accidentally
in one of our initial trials. Playing around with the two
containers, we may have done something similar and re-
member now, in the right moment, that the situation of
Fig. 28 can arise as suggested by Fig. 2g9: We fill the large
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FIG. 20

container to full capacity, and pour from it four quarts
into the smaller container and then into the river, twice
in succession. We came eventually upon something al-
ready known (these are Pappus’s words) and following
the method of analysis, working backwards, we have dis-
covered the appropriate sequence of operations.
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It is true, we have discovered the appropriate sequence
in retrogressive order but all that is left to do is to
reverse the process and start from the point whick we
reached last of all in the analysis (as Pappus says). First,
we perform the operations suggested by Fig. 29 and ob-
tain Fig. 28; then we pass to Fig. 27, then to Fig. 26, and
finally to Fig. 25. Retracing our steps, we finally succeed
in deriving what was required.

8. Greek tradition attributed to Plato the discovery of
the method of analysis. The tradition may not be quite
reliable but, at any rate, if the method was not invented
by Piato, some Greek scholar found it necessary to
attribute its invention to a philosophical genius.

There is certainly something in the method that is not
superficial. There is a certain psychological difficulty in
turning around, in going away from the goal, in working
backwatrds, in not following the direct path to the desired
end. When we discover the sequence of appropriate oper-
ations, our mind has to proceed in an order which is
exactly the reverse of the actual performance. There is
some sort of psychological repugnance to this reverse
order which may prevent a quite able student from un-
derstanding the method if it is not presented carefully.

Yet it does not take a genius to solve a concrete prob-
lem working backwards; anybody can do it with a little
common sense. We concentrate upon the desired end, we
visualize the final position in which we would like to be.
From what foregoing position could we get there? It is
natural to ask this question, and in so asking we work
backwards. Quite primitive problems may lead naturally
to working backwards; see papruUS, 4.

Working backwards is 2 common-sense procedure
within the reach of everybody and we can hardly doubt
that it was practiced by mathematicians and nonmathe-
maticians before Plato. What some Greek scholar may
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have regarded as an achievement worthy of the genius
of Plato is to state the procedure in general terms and to
stamp it as an operation typically useful in solving
mathematical and nonmathematical problems.

4. And now, we turn to the psychological experiment—
if the transition from Plato to dogs, hens, and chimpan-
zees is not too abrupt. A fence forms three sides of a
rectangle but leaves open the fourth side as shown in
Fig. 30. We place a dog on one side of the fence, at the
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point D, and some food on the other side, at the point F.
The problem is fairly easy for the dog. He may first strike
a posture as if to spring directly at the food but then he
quickly turns about, dashes off around the end of the
fence and, running without hesitation, reaches the food
in a smooth curve. Sometimes, however, especially when
the points D and F are close to each other, the solution
is not so smooth; the dog may lose some time in barking,
scratching, or jumping against the fence before he “con-
ceives the bright idea" (as we would say) of going
around.

1t is interesting to compare the behavior of various ani-
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mals put into the place of the dog. The problem is very
easy for a chimpanzee or 2 four-year-old child (for whom
a toy may be a more attractive lure than food). The prob-
lem, however, turns out to be surprisingly difficult for a
hen who runs back and forth excitedly on her side of the
fence and may spend considerable time before getting at
the food if she gets there at all. But she may succeed,
after much running, accidentally.

5 We should not build a big theory upon just one
simple experiment which was only sketchily reported.
Yet there can be no disadvantage in noticing obvious
analogies provided that we are prepared to recheck and
revalue them.

Going around an obstacle is what we do in solving any
kind of problem; the experiment has a sort of symbolic
value. The hen acted like people who solve their prob-
Iem muddling through, trying again and again, and suc-
ceeding evenmally by some Jucky accident without much
insight into the reasons for their success. The dog who
scratched and jumped and barked before turning around
solved his problem about as well as we did ours about
the two containers. Imagining a scale that shows the
waterline in our containers was a sort of almost useless
scratching, showing only that what we seek lies deeper
under the surface. We also tried to work forwards first,
and came to the idea of turning round afterwards. The
dog who, after brief inspection of the situation, turned
round and dashed off gives, rightly or wrongly, the im-
pression of superior insight.

No, we should not even blame the hen for her clumsi-
ness, There is a certain difficulty in turning round, in
going away from the goal, in proceeding without looking
continually at the aim, in not following the direct path
to the desired end. There is an obvious analogy between
her difficulties and our difficulties.

PART IV. PROBLEMS, HINTS,
SOLUTIONS

This last part offers the reader additional opportunity
for practice.

The problems require no more preliminary knowledge
than the reader could have acquired from a good high-
school curriculum, Yet they are not too easy and not
mere routine problems; some of them demand originality
and ingenuity.12

The hints offer indications leading to the result, mostly
by quoting an appropriate sentence from the list; to a
very attentive reader ready to pick up suggestions they
may reveal the key idea of the solution.

The solutions bring not only the answer but also the
procedure leading to the answer, although, of course, the
reader has to supply some of the details. Some solutions
try to open up some further outlook by a few words
placed at the end.

The reader who has earnestly tried to solve the prob-

- lem has the best chance to profit by the hint and the

solution. If he obtains the result by his own means, he
may learn something by comparing his method with the
method given in print. If, after a serious effort, he is
inclined to give up, the hint may supply him with the

12 Except Problem 1 (widely known, but too amusing to miss} all
the problems are taken from the Stanford University Competitive
Examinations in Mathematics (there are a few minor changes).
Some of the problems were formerly published in The American
Mathematical Monthiy and/or The California Mathematics Coun-
cil Bulletin. In the latter periodical also some solutions were
published by the author; they appear appropriately rearranged in
the sequel.

233
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missing idea. If even the hint does not help, he may look
at the solution, try to isolate the key idea, put the book
aside, and then try to work out the solution.

PROBLEMS

1. A bear, starting from the point P, walked one mile
due south, Then he changed direction and walked one
mile due east. Then he turned again to the left and
walked one mile due north, and arrived exactly at the
point P he started from. What was the color of the bear?

2. Bob wants a piece of land, exactly level, which has
four boundary lines. Two boundary lines run exactly
north-south, the two others exactly east-west, and each
boundary line measures exactly 100 feet. Can Bob buy
such a piece of land in the U.S.?

8. Bob has 10 pockets and 44 silver dollars. He wants
to put his dollars into his pockets so distributed that each
pocket contains a different number of dollars. Can he do
so?

4. 'To number the pages of a bulky volume, the printer
used zg8q digits. How many pages has the volume?

5 Among Grandfather’s papers a bill was found:

72 turkeys $_67.9.

The first and last digit of the number that obviously
represented the total price of those fowls are replaced
here by blanks, for they have faded and are now illegible.

What are the two faded digits and what was the price
of one turkey?

6. Given a regular hexagon and a point in its plane.
Draw a straight line through the given point that divides
the given hexagon into two parts of equal area.

7- Given a square. Find the locus of the points from
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which the square is seen under an angle {a) of go°
(b) of 45°. (Let P be a point outside. the square, but in
the same plane. The smallest angle with vertex F con-
taining the square is the “angle under which the square
is seen” from P.) Sketch clearly both loci and give a full
description.

8. Call “axis” of a solid a straight line joining two
points of the surface of the solid and such that the solid,
rotated about this line through an angle which is greater
than 0° and less than 360° coincides with itself. '

Find the axes of a cube. Describe clearly the location
of the axes, find the angle of rotation associated with

- each. Assuming that the edge of the cube is of unit

length, compute the arithmetic mean of the lengths of
the axes.

9. In a tetrahedron (which is not necessarily regular)
two opposite edges have the same length 2 and they are
perpendicular to each other. Moreover they are each per-
pendicular to a line of length & which joins their mid-
points. Express the volume of the tetrahedron in terms of
a and b, and prove your answer.

10. The vertex of a pyramid opposite the base is called
the apex. (a) Let us call a pyramid “isosceles” if its apex
is at the same distance from all vertices of the base.
Adopting this definition, prove that the base of an
isosceles pyramid is inscribed in a circle the center of
which is the foot of the pyramid’s altitude.

(b) Now let us call a pyramid “isosceles” if its apex
is at the same (perpendicular) distance from all sides of
the base. Adopting this definition (different from the
foregoing) prove that the base of an isosceles pyramid is
circumscribed about a circle the center of which is the
foot of the pyramid’s altitude.

11. Find x, y, 4, and v, satisfying the system of four
equations
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x+4qyt+gvtsu= 16
8x + 4y + 6v 4 2u = —16
2x+ 6y+ 4u+8u= 16
5x+gy+7ut u=—16

(This may look long and boring: Took for a short cut.)

12. Bob, Peter, and Paul travel together. Peter and
Paul are good hikers; each walk p miles per hour. Bob
has a bad foot and drives a small car in which two
pecple can ride, but not three; the car covers ¢ miles per
hour. The three friends adopted the following scheme:
They start together, Paul rides in the car with Bob, Peter
walks. After a while, Bob drops Paul, who walks on; Bob
returns to pick up Peter, and then Bob and Peter ride in
the car till they overtake Paul. At this point they change:
Paul rides and Peter walks just as they started and the
whole procedure is repeated as often as necessary.

(2) How much progress (how many miles) does the
company make per hour?

(b) Through which fraction of the travel time does
the car carry just one man?

(¢) Check the extreme cases # = ¢ and p = ¢.

13. Three numbers are in arithmetic progression, three
other numbers in geometric progression. Adding the cor-

responding terms of these two progressions successively,
we obtain

85, #6, and 84

respectively, and, adding all three terms of the arith-
metic progression, we obtain 126. Find the terms of both
progressions. |

14. Determine m so that the equation in x

xt —(gm+2)x2+m? =0

has four real roots in arithmetic progression.
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15. The length of the perimeter of a right triangle is
60 inches and the length of the altitude perpendicular
to the hypotenuse is 12 inches. Find the sides.

16. From the peak of a mountain you see two points,
A4 and B, in the plain. The lines of vision, directed to
these points, include the angle y. The inclination of the
first line of vision to a horizontal plane is «, that of the
second line 8. It is known that the points 4 and B are on
the same level and that the distance between them is c.

Express the elevation x of the peak above the common
level of 4 and B in terms of the angles &, 8, y, and the
distance c.

17. Observe that the value of

1.2 03 4.4 "

is 1/2, 5/6, 23/24 for n = 1,2,3, respectively, guess the
general law (by observing more values if necessary) and
prave your guess,

18. Consider the table

i

1 1

3+5 = 8
749411 = 27
13+ 15+ 17+19 = 64

21 + 23 4 25 + 27 + 29 = 125

Guess the ~~meral law suggested by these examples, ex-
press it in suitable mathematical notation, and prove it.

19. The side of a regular hexagon is of length n (n is
an integer). By equidistant parallels to its sides the hexa-
gon is divided into T equilateral triangles each of which
has sides of length 1. Let ¥ denote the number of vertices
appearing in this division, and L the number of bound-
ary lines of length 1. (A boundary line belongs to one or
two triangles, a vertex to two or more triangles.) When
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n = 1, which is the simplest case, T =6, ¥ =%, L = 12.
Consider the general case and express T, V, and L in
terms of n. (Guessing is good, proving is better.)

zo. In how many ways can you change one dollar?
{The “way of changing” is determined if it is known how
many coins of each kind—cents, nickels, dimes, quarters,
half dollars—are used.)

HINTS

1. What is the unknown? The color of a bear—but
how could we find the color of a bear from mathematical
data? What is given? A geometrical situation—but -it
seems self-contradictory: how could the bear, after walk-
ing three miles in the manner described, return to his
starting point?

2. Do you know a related problem?

8- It Bob had very many dollars, he would have obvi-
ously no dithculty in filling each of his pockets differently.
Could you restate the problem? What is the minimum
number of dollars that can be put in 10 pockets so that
no two different pockets contain the same amount?

4. Here 1s a problem related to yours: If the book has
exactly g numbered pages, how many digits uses the
printer? (9, of course.) Here is another problem related
to yours: If the book has exactly gg nunbered pages, how
marry digits does the printer use?

5. Could you resiate the problem? What can the two
faded digits be if the total price, expressed in cents, is
divisible by 72?

6. Could you imagine a more accessible related prob-
lem? A more general problem? An analogous problem?
(GENERALIZATION, 2.)

7- Do you know a related problem? The locus of the
points from which a given segment of a straight line is
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seen under a given angle consists of two circular arcs,
ending in the extreme points of the segment, and sym-
metric to each other with respect to the segment.

8. I assume that the reader is familiar with the shape
of the cube and has found certain axes just by inspection
—but are they all the axes? Can you prove that your list
of axes is exhaustive? Has your list a clear principle of
classification?

g. Look at the unknown! The unknown is the volume
of a tetrahedron—yes, I know, the volume of any pyramid
can be computed when the base and the height are given
{product of both, divided by g} but in the present case
neither the base nor the height is given. Could you
imagine a more accessible related problem? (Don’t you
see a more accessible tetrahedron which is an aliquot
part of the given one?)

10. Do you know a relaied theorem? Do you know a
related . . . simpler . . . analogous theorem? Yes: the foot
of the altitude is the mid-point of the base in an isosceles
triangle, Here is a theorem related to yours and proved
before. Could you use . . . its method? The theorem on
the isosceles triangle is proved from congruent right
triangles of which the altitude is a common side.

11. It is assumed that the reader is somewhat familiar
with systems of linear equations. To solve such a system,
we have to combine its equations in some way—look out
for relations between the equations which could indicate
a particularly advantageous combination.

12. Separate the various parts of the condition. Can
you write them down? Between the start and the point
where the three friends meet again there are three dif-
ferent phases:

(x) Bob rides with Paul
(2) Bob rides alone
{3} Bobrides with Peter.
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Call ¢,, t5, and ¢; the durations of these phases, respec-
tively. How could you split the condition into appro-
priate parts?

13. Separate the various parts of the condition. Can
you write them down? Let

a~—d, a a+d
be the terms of the arithmetic progression, and
bg1, b, bg

be the terms of the geometric progression.

14. What is the condition? The four roots must form
an arithmetic progression. Yet the equation has a par-
ticular feature: it contains only even powers of the un-
known x. Therefore, if a is a root, —a is also a root.

15. Separate the various parts of the condition. Can
you write them down? We may distinguish three parts in
the condition, concerning

(1) perimeter
_(2) right triangle
(3) heighe to hypotenuse.

16. Separate the various parts of the condition. Can
you write them down? Let a and b stand for the lengths
of the (unknown) lines of vision, « and g for their in-
clinations to the horizontal plane, respectively. We may
distinguish three parts in the condition, concerning

(1) the inclination of a
(2) the inclination of &
(g) the triangle with sides a, b, and c.

19. Do you recognize the denominators 2, 6, 24? Do
you know a related problem? An analogous problem?
(INDUCTION AND MATHEMATICAL INDUCTION.)
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18. Discovery by induction needs observation. Observe
the right-hand sides, the initial terms of the left-hand
sides, and the final terms. What is the general law?

19. Draw a figure. Its observation may help vou to dis-
cover the law inductively, or it may lead you to relations
between T, V, L, and n.

20. What is the unknown? What are we supposed to
scek? Even the aim of the problem may need some clari-
fication. Could you imagine a more accessible related
problem? A more general problem? An analogous prob-
lem? Here is a very simple analogous problem: In how
many ways can you pay one cent? (There is just one
way.) Here is a more general problem: In how many ways
can you pay the amount of n cents using these five kinds
of coins: cents, nickels, dimes, quarters, and half dollars.
We are especially concerned with the particular case

= 100.

In the simplest particular cases, for small n, we can
figure out the answer without any high-brow method,
just by trying, by inspection. Here is a short table (which
the reader should check).

nm 4 5 Q 10 14 15 19 20 24 2§
E,1 2 2 4 4 6 6 g 9 13

The first line lists the amounts to be paid, generally
called n. The second line lists the corresponding num-
bers of “ways of paying,” generally called E,. (Why I
have chosen this notation is a secret of mine which I am
not willing to give away at this stage.)

We are espécially concerned with E,,,, but there is
little hope that we can compute E,,, without some
clear method. In fact the present problem requires a
little more from the reader than the foregoing ones; he
should create a little theory.

Qur question is general (to compute E, for general n),
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but it is “isolated.” Could you imagine a more accessible
related problem? An analogous problem? Here is a very
simple analogous problem: Find A4,, the number of ways
to pay the amount of n cents, using only cents. (4, = 1.)

SOLUTIONS

1. You think that the bear was white and the point P
is the North Pole? Can you prove that this is correct? As
it was more or less understood, we idealize the question.
We regard the globe as exactly spherical and the bear as
a moving material peint. This point, moving due south
or due north, describes an arc of a meridian and it de-
scribes an arc of a parallel circle (parallel to the equator)
when it moves due east. We have to distinguish two cases.

(1) If the bear returns to the point P along a meridian
different from the one along which he left P, P is neces-
sarily the North Pole. In fact the only other point of the
globe in which two meridians meet is the South Pole, but
the bear could leave this pole only in moving northward.

(2) The bear could return to the point P along the
same meridian he left P if, when walking one mile due
east, he describes 2 parallel circle exactly n times, where
n may be 1, 2, § .. . In this case P is not the North Pole,
but a point on a parallel circle very close to the South
Pole (the perimeter of which, expressed in miles, is
slightly inferior to 2z + 1/n).

2. We represent the globe as in the solution of Prob-
lem 1. The land that Bob wants is bounded by two
meridians and two parallel circles. Imagine two fixed
meridians, and a parallel circle moving away from the
equator: the arc on the moving parallel intercepted by
the two fixed meridians is steadily shortened. The center
of the land that Bob wants should be on the equator: he
can not get it in the U.S.

Solutions 24%

3. The least possible number of dollars in 2 pocket is
obviously 0. The next greater number is at least 1, the
next greater at least 2 . . . and the number in the last
(tenth) pocket is at least g. Therefore, the number of
dollars required is at least

o+1+2+83+...+9=45

Bob cannot make it: he has only 44 dollars.
4. A volume of 999 numbered pages needs

9+ 2 X go+ 8 X goo = 2889
digits. If the bulky volume in question has x pages

2889 + 4(x — 999) = 2989
X = 1024

This problem may teach us that a preliminary estimate
of the unknown may be useful (or even necessary, as in
the present case).

5. If _679_ is divisible by 72, it is divisible both by
8 and by g. If it is divisible by 8, the number 79_ must
be divisible by 8 (since 1000 is divisible by 8) and so
#g_ must be 7gz: the last faded digit is 2. If _6792 is
divisible by g, the sum of its digits must be divisible by
g (the rule about “casting out nines”) and so the first
faded digit must be 3. The price of one turkey was (in
grandfacher’s time) $367.92 + 72 = $5.1 1.

6. “4 point and a figure with a center of symmetry (in
the same plane) are given in position. Find a straight
line that passes through the given point and bisects the
area of the given figure.” The required line passes, of
course, through the center of symmetry. Se¢ INVENTOR'S
PARADOX.

7. In any position the two sides of the angle must pass
through two vertices of the square. As long as they pass
through the same pair of vertices, the angle’s vertex
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moves along the same arc of circle (by the theorem
underlying the hint). Hence each of the two loci re-
quired consists of several arcs of circle: of 4 semicircles
in the case (a) and of 8 quarter circles in the case (b);
see Fig. g1.

FIG. 31

8. The axis pierces the surface of the cube in some
peint which is either a vertex of the cube or lies on an
edge or in the interior of a face. If the axis passes through
a point of an edge (but not through one of its end-
points) this point must be the midpoint: otherwise the
edge could not coincide with itself after the rotation.
Similarly, an axis piercing the interior of a face must pass
through its center. Any axis must, of course, pass through
the center of the cube. And so there are three kinds of
axes:

(1) 4 axes, each through two opposite vertices; angles
120°, 240°
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(2) 6 axes, each through the mid-points of two oppo-
site edges; angle 180°

(3) 3 axes, each through the center of two opposite
faces; angles go°, 180°, 270°.

Fer the length of an axis of the first kind see section
12; the others are still easier to compute. The desired
average is

w3 +6V2+ 3
13

(This problem may be useful in preparing the reader for
the study of crystallography. For the reader sufficiently
advanced in the integral calculus it may be observed that
the average computed is a fairly good approximation to
the “average width” of the cube, which is, in fact,
5/2 = L.5.)

9. The plane passing through one edge of length a
and the perpendicular of length & divides the tetrahedron
into two more accessible congruent tetrahedra, each with
base ab/2 and height a/2. Hence the required volume

= 1.416,

10, The base of the pyramid is a polygon with n sides,
In the case (a) the n lateral edges of the pyramid are
equal; in the case (b) the altitudes (drawn from the
apex) of its n latera] faces are equal. If we draw the alti-
tude of the pyramid and join its foot to the n vertices of
the base in the case (a), but to the feet of the altitudes
of the n lateral faces in the case (b), we obtain, in both
cases, n right triangles of which the altitude (of the
pyramid) is @ common side: I say that these n right tri-
angles are congruent. In fact the hypotenuse [a lateral
edge in the case (a), a lateral altitude in the case (b)]
is of the same length in each, according to the definitions
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laid down in the proposed problem; we have just men-
tioned that another side (the altitude of the pyramid)
and an angle (the right angle) are common to all. In the
n congruent triangles the third sides must also be equal;
they are drawn from the same point (the foot of the
altitude) in the same plane (the base): they form =
radii of a circle which is circumscribed about, or in-
scribed into, the base of the pyramid, in the cases (a) and
(b}, respectively. [In the case (b) it remains to show,
however, that the n radii mentioned are perpendicular
to the respective sides of the base; this follows from a
well-known theorem of solid geometry on projections.]

It is most remarkable that a plane figure, the isosceles
triangle, may have two diffevent analogues in solid
geometry.

11. Observe that the first equation is so related to the
Iast as the second is to the third: the coefficients on the
left-hand sides are the same, but in opposite order,
whereas the right-hand sides are opposite. Add the first
equation to the last and the second to the third:

6(x + u) + 10{y +v) =0,

1o(x -+ u) + 10(y + v) = 0.
This can be regarded as a systern of two linear equations
for two unknowns, namely for x + u and y + v, and easily
yields

x+u=0 y+v=o

Substituting —x for u and —y for » in the first two equa-
tions of the original system, we find

—4%x + 4y = 16
bx — 2y = — 16.

This is a simple system which yields

X = —2 Yy =2, U= 2, v= -2
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12. Between the start and the meeting point each of
the friends traveled the same distance. (Remember, dis-
tance = velocity X time.) We distinguish two parts in
the condition:

Bob traveled as much as Paul:

ety — ety + oty = cty + pty + Pita,
Paul traveled as much as Peter:
cty + pto + plg = Pty + Pty +cty.
The second equation yields
(c=P)a={c— P}ty

We assume, of course, that the car travels faster than a
pedestrian, ¢ > p. It follows

By = tg;
that is, Peter walks just as much as Paul. From the
first equation, we find that
e

& —

& l&

"o

which is, of course, also the value for t,/{,. Hence we
obtain the answers:

(2) oty — o+ t3) _ clo + 3p)
htitz+ 3¢+ p

ta N 4
(b) Hhti+t 35"‘{_[3
(¢) In fact, o < p <c¢. There are two extreme cases:
If p — o (a) vields ¢/g and (b) yields 1/3
If p = ¢ (a) yields ¢ and (b) yields o.

These results are easy to see without computation.
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18. The condition is easily split into four parts ex-
pressed by the four equations

a—d-+bgt =285

a+b =146
e+ d+bg =84
gz = 126,

The last equation yields @ = 42, then the second b = 34.
Adding the remaining two equations (to eliminate d),
we obtain

2a+ b(g~1 4 g) = 169.
Since a and b are already known, we have here a quad-
ratic equation for g. It yields
g=2  d=—206 or g=1/2, de 25
The progressions are

68, 42,16 17, 42, 6%

17, 84, 68 68, 34, 17

14. If @ and —a are the roots having the least absolute
value, they will stand next to each other in the progres-
sion which will, therefore, be of the form

—3ga, —a, 4, 3a.

Hence the left-hand side of the proposed equation must
have the form

(x2 — a?)(x? — ga?).
Carrying out the multiplication and comparing coeffi-
cients of like powers, we obtain the system

1042 = gm + 2,
ga4 = m2,
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Elimination of a yields
1gm2 — 108m — 36 = o.

Hence m = 6 or —6/1q.

15. Let a, b, and ¢ denote the sides, the last being the
hypotenuse. The three parts of the condition are ex-
pressed by

a+b+c¢ =60
a? B2 = g2
ab = 12¢,

Observing that
(@ + D)2 = a2 + b2 + 2ab
we obtain
(6o — c} 2 = ¢2 + 24c.

Hence ¢ = 25 and either ¢ = 15, b = 200ra =20, b = 15
(no difference for the triangle).
16. The three parts of the condition are expressed by

sine = =,

B |

sing =7,
2 = g2 4 $% — 2abcos ¥
The elimination of ¢ and & yields

2= ¢? sin? asin? B
sin® a + sin? 8§ — 2 sin @ sin 8 cos v
17. We conjecture that

i

I 2 s ....__._n_._= ___......__I -
5_!+3_!+ +(n+1)! (n+ 1)!

Following the pattern of INDUCTION AND MATHEMATICAL
INDUCTION, we ask: Does the conjectured formula remain
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true when we pass from the value n to the next value
n + 1? Along with the formula above we should have

1 2 n n+1 1
2_:+?ﬁ+"'+(n+;)!+(n+a)z" (n+ 2)t
Check this by subtracting from it the former: '

n41 _ | 1 1
n+2!  (+2! (a4 1)!

which boils down to

n+2 I
n+2) (n+ 1)

and this Jast equation is obviously true forn = 1,2, 3, ...
hence, by following the pattern referred to above, we can
prove our conjecture.

18. In the nth line the right-hand side seems to be n?
and the left-hand side a sum of » terms, The final term
of this sum is the mth odd number, or 2m — 1, where

nln + 1)
2 ]

m=14+2a4+3g3+---+n~=

see INDUCTION AND MATHEMATICAL INDUCTION, 4. Hence
the final term of the sum on the left-hand side should be

gm — 1= pnZ2 40—,

We can derive hence the initial term of the sum con-
sidered in two ways: going back 7 — 1 steps from the
final term, we fiind

nZ+n—1)—2n—1)=n2—n+1

whereas, advancing one step from the final term of the
foregoing line, we find

f(n—-—12+(m—1) —1]+2
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which, after routine simplification, boils down to the
same: good! We assert therefore that

n2—n+ 1)+ n2—n+g)+-r+n2+n—1)=ns

where the left-hand side indicates the sum of »n successive
terms of an arithmetic progression the difference of
which is 2. If the reader knows the rule for the sum of
such a progression (arithmetic mean of the initial term
and the final term, multiplied by the number of terms),
he can verify that

@W—nt)+@+r—1 _ 5

2

and so prove the assertion.

(The rule quoted can be easily proved by a picture
little different from Fig. 18.)

19. The length of the perimeter of the regular hexagon
with side n is 6n. Therefore, this perimeter consists of
6n boundary lines of length 1 and contains 6n vertices.
Therefore, in the transition from 7 — 1 to 5, F increases
by 6 units, and so

VF=1+6(1+24g+--+n)=3n2+3n-+1;

see¢ INDUCTION AND MATHEMATICAL INDUCTION, 4. By §
diagonals through its center the hexagon is divided into
6 (large) equilateral triangles. By inspection of one of
these

T=6(1+8+p5+--+2n—1) =6tn2

(rule for the sum of an arithmetic progression, quoted in
the solution of Problem 18). The T triangles have jointly
37T sides. In this total §T each internal line of division of
length 1 is counted twice, whereas the 6n lines along the
perimeter of the hexagon are counted but once. Hence

2L = gT + bn, L =gqgn2 + gn.
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(For the more advanced reader: it follows from Euler’s
theorem on polyhedra that T + ¥V = L + 1. Verify this
relation!)

20. Here is a well-ordered array of analogous prob-
lems: Compute 4,, B,, C,, D, and E,. Each of these quan-
tities represents the number of ways to pay the amount
of n cents; the difference is in the coins used:

A, only cents

B, cents and nickels

C, cents, nickels, and dimes

D, cents, nickels, dimes, and quarters

E, cents, nickels, dimes, quarters, and half dollars.

The symbols E, (reason now clear) and 4, were used
before.

All ways and manners to pay the amount of n cents
with the five kinds of coin are enumerated by £, We
may, however, distinguish two possibilities:

First. No half dollar is used. The number of such ways

to pay is D,, by definition.
. Second. A half dollar (possibly more) is used. After
the first half dollar is laid on the counter, there remains
the amount of n — 50 cents to pay, which can be done in
exactly E,_r, ways.

We infer that

Eyn = Dy + Enso.

Similarly
Da = Cn + Dn—253
Co = By + Cu_10
Bﬂ = A” + Bn_s.

A little attention shows that these formulas remain
valid if we set
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(which obviously makes sense) and regard any one of the
quantities 4,, B, . . . E, as equal to o when its subscript
happens to be negative. (For example, Ey5 = Dyj, as
can be seen immediately, and this agrees with our first
formula since Ey5_50 = E_55 = 0.)

Our formulas allow us to compute the quantities con-
sidered recursively, that is, by going back to lower values
of n or to former letters of the alphabet. For example,
we can compute C,, by simple addition if C54 and By,
are already known. In the table below the initial row,
headed by 4, and the initial column, headed by o, con-
tain only numbers equal to t. (Why?) Starting from these
initial numbers, we compute the others recursively, by
simple additions: any other number of the table is equal
either to the number above it or to the sum of two
numbers: the number above it and another at the proper
distance to the left. For example,

Cap =Bgg T Cag=7+9=16

The computation is carried through till E;, = go: you
can pay o cents in exactly o different ways. Carrying it
further, the reader can convince himself that E;,, = 292:
you can change a dollar in 292 different ways.

O 5 10 15 20 25 30 35 40 45 5O

1 1 1 1 1 1

6 7 8 g 10 11
12 16 20 25 30 g3b
13 18 24 31 %9 49
13 18 24 %1 g9 so
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